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ABSTRACT 
 

Although Metal-Organic Chemical Vapour Deposition (MOCVD) is the most common 
technique to grow III-nitride films for light-emitting diode (LED) application, there are still 
several open questions such as the dislocations in LED structures and low thermal 
conductivity. The solutions to such problems have been approached by various deposition 
techniques over the past few years. In this review, the properties of gallium nitride (GaN) 
grown using different techniques and the consequences of the heteroepitaxial layers are 
discussed. At first, the general properties of GaN and its application for optoelectronic 
devices are presented briefly. To improve the crystallinity of GaN, it is necessary to identify 
and evaluate the defects present in the heteroepitaxial layers, which lead to poor crystal 
quality of films, and eventually to find an approach to overcome these issues. Several 
approaches using various substrates that have been published are discussed here and, 
finally, the directions of a new potential method for GaN growth using the magnetron 
sputtering technique are described.  

 
Keywords: Aluminium-Gallium Nitride, Film Defects, Gallium Nitride.  

 
  

1.  INTRODUCTION  
 
Gallium arsenide phosphide (GaAsP) and gallium phosphide (GaP) were first commercialized 
for red and green light-emitting diodes (LEDs), respectively. According to Amano [1], from the 
periodic table, gallium nitride (GaN) could be employed to fabricate blue LEDs. A high 
temperature (2530°C) and a very high pressure (45,000 atm) are needed to grow GaN. Thus, a 
chemical reaction is used to lower down the temperature and pressure for the growth of GaN. 
However, there was a problem of finding a suitable substrate material to grow high crystal 
quality of GaN films. The lack of substrate material match with the thermal expansion coefficient 
(TEC) of GaN has long prevented the use of GaN [2,3]. In 1986, Amano et al. demonstrated that 
by using Metal-Organic Chemical Vapour Deposition (MOCVD), the GaN layer on sapphire [4] is 
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possible as the result of the stability at high temperature because the melting point of sapphire 
is 2040°C [5]. Although GaN was successfully grown on sapphire, the surface of GaN was rough 
and its quality was very poor. The problem that arises with the sapphire substrate is that the 
lattice mismatch of the sapphire (0001) plane and the wurtzite GaN differs by ~13.8%–16.0% 
[4,6]. The TEC difference between sapphire and GaN is also considerably large, which normally 
generates poor crystallinity and defects formation such as the cracking effect in the GaN layer. 
Buffer layers are employed to overcome these problems [6]. Akasaki and Amano fabricated a 
small amount of aluminium nitride (AlN) which acts as nucleation layers at a low temperature. 
The process is recognized as “low-temperature-deposited buffer layer technology” [7]. Since 
then, several methods have been developed to deposit perfect GaN films on different substrates.  
 
GaN film has been widely used in many applications due to its advantageous properties. Hu et al. 
fabricated an ultraviolet light-emitting diode (UV LED) using GaN by a combination of 
sputtering and MOCVD methods. The UV LED was reported emitting at 375 nm on a sapphire 
substrate [8]. The advantages of UV LEDs in comparison to traditional mercury lamps have 
raised great interests in the exploration regarding its applications [9,10]. Using AlGaN/GaN 
heterostructure on a silicon carbide (SiC) substrate, Chauhan and Sunny demonstrated a metal-
oxide-semiconductor field-effect transistor (MOSFET) using GaN for high-power applications 
[11]. Other methods, such as that employed by Lee et al., grew GAN on a silicon (Si) substrate for 
high-electron-mobility transistors (HEMTs) [12]. Ramizy et al. grew GaN onto Si (111) using AlN 
as a nucleation layer grown by plasma-assisted molecular-beam epitaxy (PAMBE) [13]. The GaN 
layer was then further tested for hydrogen gas sensor applications. Nakamura et al. developed 
AlN and GaN layers using MOCVD on a sapphire substrate for water-splitting photocathode [14]. 
 
As mentioned by Wu et al., due to the large mismatch in the crystal lattice and large difference in 
the TEC between GaN and the substrates, the film will start to have large dislocation density, 
mosaic crystallinity, biaxial stress and wafer bonding [15]. In this review paper, the defects 
present in the GaN films and how they are reduced in most of the studied substrates [16] using 
different heteroepitaxial techniques are presented. This paper presents the general properties 
of GaN in Section 2. In Section 3, GaN growth using different techniques on different substrates 
are presented. This paper concludes with the future outlook in Section 4. 
 
 
2. GENERAL PROPERTIES OF GAN  
 

Gallium nitride (GaN) is one of the promising materials for many applications such as light-
emitting diodes (LEDs) [17], photoelectric detectors and high-electron-mobility transistors 
(HEMTs), considering that its direct energy bandgap is 3.4 eV [18–20]. It has excellent thermal 
stability, thermal conductivity (2.1 W cm-1 K-1) at 300 K [21] and high electron mobility (~400 
cm2 V-1 s-1) at 300 K [22]. GaN can crystallize into two forms, either zincblende or wurtzite 
structure [23]. However, GaN is mostly found in the wurtzite structure. Generally, the 
conductivity of undoped GaN is n-type [24]. In order for GaN to have p-type conductivity, it must 
be doped with other materials such as magnesium atoms [25,26], while silicon atoms will lead 
to n-type conductivity [27]. The properties of GaN are summarized in Table 1. 
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Table 1 Some basic properties of GaN 

Properties Value References 

Mass density  6.15 g cm-3 [28] 

TEC at room 
temperature  

Δα/α: 5.59 × 10-6 K-1 

Δc/c: 3.17 × 10-6 K-1 

[28] 

Δα/α: 3.1 × 10-6 K-1 

Δc/c: 2.8 × 10-6 K-1 
[23] 

Lattice constant a = 3.189 × 10-8 cm 
c = 5.185 × 10-8 cm 

[28–31] 

 
 

3. OVERVIEW OF EPITAXY TECHNIQUES 
 

Regardless of applications, GaN requires good crystal quality films. Several epitaxial methods 
have been suggested to obtain better crystal quality of GaN such as hydride vapour phase 
epitaxy (HVPE), MOCVD, molecular-beam epitaxy (MBE), and pulsed laser deposition (PLD). 
Some methods were summarized by Denis et al. [32], Nasser et al. [33] and Qiang [34].  A 
summary of several methods to grow GaN is given in Table 2. 
 

Table 2 Summary of GaN film growth using different techniques  
 

Method/ type of 
substrate 

Analysis Growth temperature/ 
pressure 

References 

MOCVD/Si (111) and 
etched (001) 

Energy Dispersive Spectroscopy 
(EDX), X-ray Diffraction (XRD), 
Photoluminescence (PL) spectra 

AlN: 1050–1200°C; 
GaN: 1000–1150°C/ 
atmospheric pressure 
(101.32 kPa) 

[35] 

Selective area growth 
(SAG) method in 
MOCVD/patterned Si 
(110)  

Scanning Electron Microscopy 
(SEM), Atomic Force Microscopy 
(AFM), Cathode Luminescence (CL) 
spectroscopy 

1060–1100°C/  
1.33–6.67 × 104 Pa 

[36] 

HVPE/sapphire SEM, XRD, CL GaN: 1050°C; 
Graphene; CVD: 1200°C 

[37] 

MOCVD/Si (111) AFM, XRD ω-scan 1100°C/ 
GaN: 20 kPa; 
AlN: 5 kPa 

[38] 

HVPE GaN:Ge/ 
ammonothermal –
GaN substrate 

XRD, optical microscopy, Raman 
spectroscopy, Capacitance-Voltage 
(CV) technique, Hall measurements, 
Secondary Ion Mass Spectrometry 
(SIMS), PL 

850°C and 1045°C [39] 

High Temperature 
Vapour Phase 
Epitaxy 
(HTVPE)/(0001) 
sapphire 

Differential Interference Contrast 
(DIC) optical microscopy, SEM, XRD, 
PL, SIMS, Glow Discharge Mass 
Spectroscopy (GDMS) 

1350–1400°C/ 
20–985 mbar 

[40] 

HVPE/sapphire Electroluminescence (EL), PL, 
microCL, High-Resolution X-ray 
Diffraction (HRXRD) 

1040°C/ 
atmospheric pressure 

[41] 

MBE/sapphire XRD rocking curve, SIMS, AFM 800–900°C [42] 
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MBE/HVPE-grown 
GaN substrate 

Transmission Electron Microscopy 
(TEM), SIMS, AFM 

660–76°C [43] 

MBE/4H-SiC Reflection High-Energy Electron 
Diffraction (RHEED), Field-Emission 
Scanning Electron Microscopy 
(FESEM), AFM, X-ray Photoelectron 
Spectroscopy (XPS), HRXRD, PL 

700–800°C [44] 

MBE/HVPE-grown 
GaN substrate 

TEM, AFM, SIMS 600°C/ 
10-6–10-7 Torr 

[45] 

 

3.1 Hydride Vapour Phase Epitaxy  
 
GaN can be grown using the hydride vapour phase epitaxy (HVPE) method. HVPE was the first 
technique to grow GaN with single-crystal films [34]. HVPE is done in a quartz HVPE reactor 
which consists of two-zone reactors (source and growth zones) for different temperature levels, 
as shown in Figure 1 [39]. The ammonia (NH3) nozzle is placed at an equivalent level of the 
susceptor. Gallium chloride (GaCl) and germanium tetrachloride (GeCl4) are supplied vertically 
through a spray-type nozzle placed above the substrate. The substrate is placed on a rotating 
susceptor disc on the right side of the HVPE reactor. GaCl is achieved through the reaction of 
hydrochloride (HCl) and gallium (Ga) at 850°C. In the growth zone, at 1045°C, GaCl is 
transferred by the carrier gas and mixed with NH3 to form GaN [45]. Most studies reported the 
used of the HVPE technique to grow bulk GaN crystals and freestanding GaN substrate [46,47]. 

 

 
 

Figure 1. Schematic diagram of horizontal HVPE reactor [39].  

 
3.2 Metal-Organic Chemical Vapour Deposition 
 
MOCVD is a long-established technique used for heterostructure growth to produce electronic 
devices [48]. MOCVD is also called Metal-Organic Vapour-Phase Epitaxy (MOVPE) [34]. This 
technique requires a constant flow of gases which will react chemically in a high-temperature 
chamber to form the GaN layer. Two types of MOCVD reactor that are readily available in the 
market are namely, horizontal and vertical reactors. Figure 2 shows a schematic view of a 
MOCVD system [33]. Trimethylgallium (TMGa) reacts with NH3 in a high-temperature reactor 
for the growth of GaN [31]. A carrier gas such as hydrogen (H2) is needed to deliver the metal-
organic precursors. Additional precursors such as trimethylaluminium (TMA) and methylsilane 
(SiH3CH3) are also used [43]. Several reactor concepts have been developed to improve the flow 
of gases on a wide surface area and within multi-wafer concepts. 
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Figure 2. Schematic diagram of MOCVD technique [33]. 
 

3.3 Molecular-Beam Epitaxy 
 
Another method to grow GaN is Molecular-Beam Epitaxy (MBE) [49]. It includes Plasma-
assisted MBE (PAMBE) and laser MBE [50]. The MBE process occurs when there are reactions 
among the molecular thermal energy, the atomic or ionized beams of each element in high-
temperature and ultrahigh-vacuum environments [23]. The molecular beam of Ga comes from 
effusion cell sources. N radicals are achieved by Radio Frequency (RF) plasma or ammonia 
source as a result of very high binding energy. Throughout the process, the substrate is typically 
rotated and the growth temperature is up to 800°C. A basic MBE growth chamber is shown in 
Figure 3 [51]. 
 

 
Figure 3. Schematic diagram of the top view of a simple MBE chamber [51]. 

 
 

4. RECENT PROGRESS ON THE GROWTH OF III-NITRIDE FILMS 
 

Other than the fabrication techniques, the choice of substrate is also crucial in order to achieve a 
good crystal quality of GaN. An experiment conducted by Yang et al. on the deposition of GaN on 
three different substrates of Si (111), sapphire (0001) and 4°-miscutting orientation by plasma-
assisted molecular-beam epitaxy shows that the substrates affect the growth mechanism and 
physical properties of the GaN films [49]. 
 
Based on a previous study, AlN is one of the most suitable buffer layer materials for GaN growth 
[52]. The AlN layer serves as a barrier layer for silicon and gallium. Furthermore, in order to 
obtain GaN films with fewer defects (compressive strain), AlN layer is suggested, as it gives low 
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lattice mismatch [53]. AlN is the binary material in the III–V nitride group, having a wurtzite 
structure in a hexagonal crystal form. AlN is also a potential material for LEDs, laser diodes [54] 
and insulating ceramics for piezoelectric sensors [55]. It has a large bandgap of 6.2 eV [18,28] 
and good thermal conductivity of 285 W m-1 K-1 [56]. The characteristics of AlN are shown in 
Table 3 and the fundamental crystal structure of AlN is shown in Figure 4. 
 

Table 3 Some basic properties of AlN 

 
Properties Value References 
Melting temperature 2200°C [55] 
Mass density  3.23 g cm-3 [28] 
Lattice constant 
 

a = 3.1114 Å 
c = 4.9792 Å 

[57] 

CTE at room 
temperature  

Δα/α: 4.2 × 10-6 K-1 

Δc/c: 5.3 × 10-6 K-1 

[28–31] 

 
 

 
 

Figure 4. Schematic diagram of wurtzite AlN crystal structure [58]. 

 
4.1 Growth of GaN on a Sapphire Substrate 
 

Since sapphire (α-Al2O3) has a high melting point, hence suitable for the deposition of films at 
very high temperature. In addition, sapphire also has high thermal conductivity (40 W m-1 K-1) 
[24]. The schematic diagram in Figure 5 shows the principle of the growth of GaN on a sapphire 
substrate [31]. The difference in the lattice mismatch of sapphire and GaN is 13.6% [13]. 

 
 

Figure 5. Crystal structure of GaN and sapphire [31]. 
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4.1.1 Growth of GaN on a Sapphire Substrate using HVPE 
 

Hiramatsu et al. fabricated GaN using horizontal quartz reactor HVPE on a (0001) sapphire 
substrate [59]. They used a low-temperature buffer layer in the experiment. The temperature of 
the first region (source zone) was set at 850°C, while the second region (growth zone) was at 
1090°C. They reported that when a stripe tungsten mask pattern was performed, the Scanning 
Electron Microscope (SEM) image shows that the smooth surface can be easily obtained without 
pits compared to the case of SiO2 mask where the surface has many pits and the absence of 
voids, as in Figure 6(a). Generally, most of the pits originate from Threading Dislocation (TD) 
[60,61], while the presence of the unintentional voids is from relaxed stress as a result of the 
thermal mismatch between the film and the substrate [62]. The measurement of the X-ray 
Rocking Curve (XRC) also shows that GaN with SiO2 mask has a broad Full Width at Half 
Maximum (FWHM), which indicates poor crystal quality. From the Transmission Electron 
Microscope (TEM) images, there are no dislocations from the stripe tungsten mask, while for 
the SiO2 mask, a dislocation comes from the centre of the mask and goes through to the surface 
of the GaN layer. 

 
 

Figure 6. SEM cross-section images of GaN on (a) SiO2 and (b) stripe tungsten mask [59]. 

 
Dwikusuma et al. fabricated GaN using a vertical HVPE reactor at a high temperature of 985–
1100°C [63]. The sapphire substrate was nitridated at 1100°C before the deposition of GaN. The 
AlN layer comes from the nitrogen incorporation during the nitridation process [64], as proven 
in Figure 7. Comparing the suitability of the lattice crystal in growing GaN on sapphire (~16%), 
AlN was used for the deposition because of its lower lattice mismatch (~3%). The smaller 
energy barrier for the growth of GaN was used due to the presence of the smaller lattice 
mismatch. 
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Figure 7. XPS peaks of (a) standard AlN film and (b) sapphire substrate after nitridation [64]. 

 
4.1.2 Growth of GaN on a Sapphire Substrate using MOCVD 
 
Huang et al. successfully fabricated GaN on sapphire using Closed-Coupled Showerhead (CCS) 
MOCVD for the High-Electron-Mobility Transistor (HEMT) [6]. AlN with double-step growth at 
high temperature (HT-AlN) acts as the buffer layer. GaN film obtained by depositing on HT-AlN 
has a better crystalline quality for HEMT application. However, the film has mixed polarity 
domains, resulting in poor surface morphology and decreased resistivity [65]. This may be due 
to the occurrence of unintentional nitridation at high growth temperature, resulting in the 
formation of the amorphous AlN layer. Therefore, to enhance the crystal quality and to 
eliminate polarity domains, a two-step AlN layer is fabricated. As a result, the grown GaN layer 
has a low density of TD and leakage current. Besides, the result of the HEMT device made from 
the usual photolithography and lift-off process shows that the GaN layer grown on a two-step-
temperature AlN buffer is capable of producing a high-resistance film for HEMT device 
application.  
 
The presence of a large density of TD is commonly known as the result of large differences in 
the lattice crystal and TEC of both the GaN films and the substrate. The TDs result in bad 
performance of GaN devices. To reduce the TDs on GaN films, different approaches have been 
studied, including microscale SiO2-patterned mask [36], epitaxial lateral growth (ELOG) [65], 
defect selective passivation and patterned sapphire substrate. Recently, Chen et al. reported 
that when a GaN layer is deposited on sapphire and the sputtered AlN film is made as a buffer 
layer, a low-TD film is obtained [66]. The reduction in TDs is due to the development of Basal 
Plane Stacking Faults (BPSFs) at different heights, which prevent the TD extension during the 
growth. A large area of nucleation islands achieved using the sputtering process and the 
deposition GaN films leads to the formation of the stacking faults, hence proving that the AlN 
layer deposited using sputtering for the buffer layer improves the crystal quality of GaN. 
 
Aida et al. grew a 3-μm thin film of GaN on a sapphire substrate [67]. The surface roughness on 
the back of the sapphire substrate was studied by them regarding the bowing characteristic of 
GaN at a temperature ranging from 25°C to 800°C. Throughout the epitaxy process, the bowing 
phenomenon of the sapphire substrate can occur due to the presence of heteroepitaxial strain 
coming from the differences in lattice constant and TEC. In their study, the change of the 
substrate bowing is measured from the FWHM of the rocking curve measurement. The study 
shows that GaN grown with a smooth back surface roughness of the sapphire substrate results 
in a big amount of bowing. The GaN on the sapphire substrate is bowed in the convex direction 
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at room temperature and, with increasing temperature, the bowing reduces, becoming flat and 
then becomes concave. These results are consistent with a previous study which shows that 
temperature will affect the bowing of the substrate [68]. 
 

 
  

(a) (b) (c) 
 

Figure 8. Bowing characteristics of (a) convex, (b) flat and (c) concave shapes [67].  

 
Chen et al. developed a two-step temperature process to achieve homogeneous nucleation layer 
and better crystallinity of GaN nanostructure deposited on top of a patterned sapphire [69]. 
Comparison with a single-step temperature growth shows that although there is a huge change 
in the crystal quality and crystal orientation with rising temperature, the homogenous 
nucleation layer is degraded. In the first step, the temperature was set at 950°C, resulting in the 
advanced nucleation layer which is a thin AlN, and the second step was set at 1040°C for the 
GaN growth. The TEM image in Figure 9(a) shows that two TDs with the screw-type are 
observed and no edge-type TD is observed. Furthermore, a few stacking faults are present in 
this case, as shown in Figure 9(b). This result indicates that the crystal quality of SAG of the GaN 
nanostructure is significantly improved using a very thin mask (5 nm). 
 

      
 

Figure 9. TEM images of GaN films [69]. 

 
4.1.3 Growth of GaN on a Sapphire Substrate using MBE 

 
Dixit et al. grew GaN films on a pre-nitridated sapphire substrate using a Laser Molecular-Beam 
Epitaxy (LMBE) system that comes with in situ Reflections High-Energy Electron Diffraction 
(RHEED) and a RF nitrogen plasma source [50]. They studied the deposition temperature (500–
700°C) of the grown layer of GaN. They estimated the presence of stress in the GaN layer using 
omega-2 theta, as in Figure 10 and found that the GaN epitaxial layer has a large in-plane 
compressive stress at low growth temperature, while at high growth temperature (700°C), the 
strain and stress in the layer are drastically reduced. They believed that the deposition 
temperature changes the growth mode of GaN. At high growth temperature, GaN grows from 
grain to an island growth, resulting in the reduction of biaxial strain. 
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Figure 10. HRXRD 2θ/ω spectra of GaN layers [50]. 

 
4.2 Growth of GaN on Silicon Carbide (SiC) Substrate 
 
Due to the advantages of its high strength, low thermal expansion, good thermal shock 
resistance, high thermal (4.5 W cm-1 K-1) and electrical conductivities [29], silicon carbide (SiC) 
substrate is one of the good candidate materials for high-power LEDs [70,71]. Additionally, the 
difference in the thermal expansion between SiC and GaN is as low as ~3.5% [72]. The 
difference in the coefficients of the thermal expansion of GaN and SiC is also low, which is 
~3.2% [70,72]. 
 
4.2.1 Growth of GaN on SiC Substrate using MBE 
 
Tian et al. successfully fabricated high-quality GaN crystal on 6H-SiC using HVPE with a two-
step growth process, which was then directly self-detached from the SiC for the use of GaN 
wafers [74]. The experiment was conducted at atmospheric pressure in a home-built vertical 
HVPE reactor. The first zone temperature was set at 500–800°C, while the second zone 
temperature was at 1050°C. From the PL spectra measurement in Figure 11, the freestanding 
GaN layer has good optical quality since, at a wavelength of 500–600 nm, the presence of a very 
weak yellow luminescence indicates a low density of native defect. 

 
 

Figure 11. PL peak of the freestanding GaN [74]. 
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4.2.2 Growth of GaN on SiC Substrate using MOCVD  
 
Helali et al. grew GaN on a 4H-SiC substrate using MOCVD [16]. A Si3N4 was fabricated as the 
passivation layer for the HEMT device performance. The passivation layer was used to 
overcome the trapping effects existing at the surface and in the GaN buffer layer. The trapping 
effects reduce the breakdown voltage and the output current. The passivation layer using Si3N4 
is believed to reduce the electrically active surface traps, resulting in an increase of the 
maximum power of the RF power recovery. The high crystalline quality of GaN material was 
successfully grown on SiC substrates by di Forte-Poisson et al. [75]. A low-pressure MOCVD was 
used to grow the GaN. They reported that the structural quality of the GaN improves when AlN 
nucleation layer is employed. A comparison of the HR-XRD measurements has been made with 
GaN grown directly on SiC, as shown in Figure 12. Figure 12(a) shows the rocking curve of 
FWHM of GaN with AlN as the nucleation layer and Figure 12(b) shows the GaN grown directly 
on SiC substrate. 

 
Figure 12. X-ray rocking curve of a GaN/SiC heterostructure on (a) treated SiC and (b) pure SiC. 

 

4.2.3 Growth of GaN on SiC Substrate using MBE 
 
Yun et al. deposited GaN on a porous SiC using MBE by employing NH3 as the nitrogen source 
[76]. They believed that by using a porous template, the nanopatterned porous structure can 
promote the growth of the film, resulting in less presence of defect density. They also studied 
the effect of the skin layer (~60 nm) present at the surface of the substrate. The skin layer in 
this work is defined as a layer where most pores are buried. From the TEM measurement, they 
found that the dislocation distribution is significantly dependent on the skin layer. The 
dislocation density with the skin layer is about ~5 × 109 cm-2, while when the skin layer is 
detached, the dislocation density is reduced to ~1 × 109 cm-2. This shows that the crystal quality 
of GaN is better without the skin layer. Also, PL spectra show that the FWHM of the GaN films 
without the skin layer is smaller compared to GaN with the skin layer. 
 
4.3 Growth of GaN on Silicon (Si) Substrate 
 
Silicon is the most used semiconductor and substrate material due to its cost efficiency [77], 
large size [17,21], excellent thermal stability [21] and high thermal conductivity (130 W/m-1 K-

1) [77,78]. However, there are several problems, such as the huge difference in the lattice 
constant and the difference in the CTE with GaN [21,77], resulting in material defects and 
quality and device reliability. However, the silicon substrate itself is defect-free. To overcome 
these problems, several epitaxial procedures have been developed. Several works have been 
published about the deposition of GaN on a silicon substrate [80]. It has been done by changing 
parameters such as the thickness of the buffer layer, deposition temperature, material 
concentration and flow rate of the gases. 
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4.3.1 Growth of GaN on Si Substrate using HVPE 
 
Bessolov et al. grew a semipolar AlN and GaN using HVPE on a planar Si (100) substrate [81]. A 
SiC layer with a thickness of ~100 nm as a buffer layer was deposited on a silicon substrate by 
solid-phase epitaxy. The SiC layer was then followed by an AlN buffer layer with a thickness of 
~300 nm and the GaN layer. The SiC was deposited at 1280°C, AlN at 1080°C and GaN at 
1050°C. Before deposition, the Si (100) surface was cleaned with a chemical etching agent. The 
silicon was misoriented by angles 2°, 4° and 7° in the <011> direction. However, the study 
shows that the presence of defects such as stacking faults and TD are not dependent on the 
substrate misorientation. 
 
4.3.2 Growth of GaN on Si Substrate using MOCVD 

 
A single crystalline of GaN deposited using MOCVD on n-type silicon (111) substrate has been 
claimed by Uen et al. [82]. The effect of the substrate nitridation temperature where the silicon 
nitride (SiNx) was formed by a nitridation process in the MOCVD reactor was studied. The 
silicon wafer was cut by 4° towards the <011> direction. They reported that when appropriate 
nitridation temperature was given, which is higher than 950°C, a defect resulting in a broad 
emission of yellow luminescence is not present in the photoluminescence (PL) spectra, as 
shown in Figure 13. The yellow luminescence (YL) present due to defects which act as deep 
acceptors [82,83] and is known as the dominant defect related to the PL bands [85]. Two defects 
that can be observed from the PL can be found at 3.4 eV, which belongs to the hexagonal GaN, 
and the broad YL transition at 2.3 eV, which may come from deep-level impurities and/or lattice 
defects [24,82]. These induced defects can greatly disturb the performance of devices, especially 
for laser diodes. 
 

 
 

Figure 13. PL spectra of GaN epilayer [82]. 

 
Abd Rahman et al. obtained a high quality single-crystalline of GaN grown on silicon (111) using 
MOCVD [86]. The influence of the nitridation times (40, 220 and 400 s) on GaN crystalline 
quality was studied. In order to remove the native oxide on the surface, the substrate was 
annealed inside a chamber at 1125°C for 10 minutes under H2 ambience before the growth 
process. It is reported that the crystallinity and surface morphology of the GaN layer improved 
after the silicon is nitridated for 400 s at 1000°C. AFM image shows that the sample is uniform 
and homogenous with a small grain size of 4.247 nm and the RMS roughness of the sample is 
1.475 nm. After the nitridation, the process was then continued by depositing a thin AlN 
nucleation layer as the buffer layer and 40 pairs of AlN/GaN multilayer as the strain-
compensation layer. The XRD spectra for phi-scan analysis shows that the GaN has good single-
crystal quality with a hexagonal structure. A previous study stated that, by adding super-lattice 
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interlayers as the strain-compensating layer, the substrate bowing could be reduced [87]. The 
bowing of the Si wafers is caused by the large mismatch between the CTEs of GaN and Si. The 
bowing of the sample recorded is 51.99 μm. A smooth layer structure with no crack and pits was 
observed from the FESEM image. 
 
Yamada et al. demonstrated the deposition of GaN on a Si (111) substrate with an AlN 
intermediate layer deposited at 350°C using a reactive sputtering method [17]. The GaN layer 
was grown by the facedown horizontal MOVPE system at 1100°C and at low pressure. 
Compared with GaN films grown with AlN intermediate layer deposited at 1200°C using the 
MOVPE method, the initial nucleus density of GaN is about three times smaller than that of GaN 
films grown with AlN intermediate layer deposited at 350°C. The small pit density of the 
deposited film when AlN is used as the intermediate layer is due to the small nucleus density of 
GaN. By introducing AlN as the nucleation layer, a smooth surface of GaN with Ga-polar was 
observed. Apart from that, the direct growth of GaN suffers from the high possibility of the 
presence of amorphous Si3N4 [52].  
 
Wang et al. developed AlN templates on a Si (111) substrate using PLD at 850°C [21]. They 
reported that the quality of the single crystal of AlN template with smaller surface roughness 
results in good crystal quality of GaN films. From the XRC measurement, according to the XRC 
results, and comparing the results with GaN grown without the AlN nucleation layer, the screw-
type TD including edge and mixed types are reduced extremely. A high density of TDs in the 
order of 109–1010 cm-2 exist in the GaN film on the silicon substrate due to a large lattice 
mismatch. The TDs are the most defects found in the GaN films and are present between the 
substrate and the epitaxial layer [88]. The TDs significantly affect the performance of the GaN-
based devices. The TDs present on the growth of GaN on Si include the pure edge, the pure 
screw and mixed dislocations [79]. The advantages of the ex situ low-temperature growth 
include overcoming the chemical reactions between the Si substrate and the films, decreasing 
the kinetic energy that will diffuse between Si and nitride, preventing thermal diffusion, 
lowering power consumption and enhancing productivity. Results obtained by Wośko et al. 
show that the LT-AlN interlayers during the growth of GaN on Si (111) have advantages in 
lowering the stress of the deposited GaN layer and thus extending its critical thickness [89]. 
 

 
 

Figure 14. Schematic diagram of samples grown by both PLD and MOCVD [21]. 
 

Crack-free GaN grown using MOCVD on an n-type Si (111) substrate is reported by Li et al. [78]. 
By using different pressures to grow the AlN buffer layer of 40 nm thickness per layer, high 
quality of GaN with the absence of crack is obtained. The GaN film is grown without the AlN 
nucleation layer because the roughness of the nucleation layer when doped decreases the 
electrical performance of devices. The study also shows that a 3D-grown GaN can lessen the 
tensile stress and, when the 3D growth time is prolonged, the residual stress in the top layer of 
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GaN decreases, resulting in the reduction of cracks. TD density of the sample obtained by AFM is 
about 5.2 × 108 cm-2 and the RMS roughness is 0.238 nm.  
 
Iwata et al. fabricated a GaN layer using MOVPE on a (111) Si substrate [90]. They reported the 
influence of Rapid Thermal Annealing (RTA) on the crystal defects. The RTA is conducted inside 
an infrared gold image furnace. The AlN nucleation layer is grown at 970–1220°C, while the 
aluminum indium nitride (AlInN) buffer layer is deposited at 720°C. According to the study, the 
RTA does not affect the yellow emission band (YL), as shown in Figure 15. However, using the 
TEM measurement, they learned that TD with the half-look screw-type shrink/move when RTA 
is done at 600–700°C. Nevertheless, no change is observed regarding the edge and mixed types 
of dislocations. 
 

 
 

Figure 15. PL spectra of the GaN films [90]. 

 
Ji et al. grew high-quality GaN using MOCVD assisted with in situ NH3 cleaning process on a 
(111) Si substrate [91]. They prepared two samples of GaN, of which one sample is without the 
cleaning process and the other one is vice versa. The new type of cleaning process was invented 
to clear up the particles of AlN, GaN, etc. and metal droplets of Al, G, etc. because it is hard to 
clean these using the normal cleaning process. The difficulty is that, at high temperature, the 
coating of the metal droplets on the post-growth flange and reactor will vaporize, resulting in 
the deposition onto the Si substrate together with the trimethyl-aluminium (TMAl) preflow. By 
observing two different samples using optical microscopy, they found a lot of pits present on the 
surface of the GaN layer without the new cleaning process, which is related to the intersection of 
TD. On the other hand, the sample that undergoes the new cleaning process has very smooth 
surfaces with a clear sample, as shown in Figure 16. This result is supported with FWHM of 
HRXRD, which shows that samples with the new cleaning process have better crystal quality. 
 

 
 

Figure 16. GaN surface layer (a) without the new cleaning process and (b) with the new cleaning 
process[91].  



International Journal of Nanoelectronics and Materials 
Volume 13, No. 1, Jan 2020 [199-220] 

213 
 

4.3.3 Growth of GaN on Si Substrate using MBE 
 
Wang et al. studied the effect of Si doping of GaN on Si (111) [92]. Using a buffer layer of SiC, the 
GaN:Si and GaN films are grown using MBE. From the AFM measurements, the undoped GaN 
film contains plateau-valley morphology with large, atomically flat terraces on its surface. This 
kind of valleys is believed to disturb the device performance. The study shows that the 
dislocation density decreases from about 1 × 1010 to 1 × 109 cm-2 when the GaN film is doped 
with Si. From the TEM images shown in Figure 17, it is found that the density of stacking faults 
(SFs) and cubic phase increase It is also found that the main dislocations present in the doped 
GaN are pure-edge dislocations, while in the undoped GaN the types of the dislocation present 
are mixed and edge dislocations. The decrease of the dislocation density in the doped GaN may 
be due to the small density of TD with the mixed type because of the existence of a large density 
of SFs. 
 

 
 

Figure 17. TEM cross-section images of (a) undoped GaN and (b) Si-doped GaN [92]. 

 
As stated by Ji et al. [91] and reviewed by Li et al. [93], it can be summarized that direct growth 
of GaN on Si substrate still faces reproducibility and reliability issues because of: 
 

1. The chemical reaction between GaN and Si (melt back etching phenomenon). 
2. The presence of dislocation density with values of more than 108 cm-2 due to the high 

difference of lattice mismatch between GaN and Si. 
3. The large difference in CTE that leads to the generation of tensile stress during the 

cooling down, causing the cracking effect. 
 
 
5. OVERVIEW OF SPUTTERING TECHNIQUES 
 

Sputtering is one of the methods to deposit III-nitride films. Different types of sputtering 
available, such as DC and RF magnetron sputtering, pulsed sputtering and currently the High-
Power Impulse Magnetron Sputtering (HiPIMS), are widely used to deposit the III-nitride films. 
These kinds of sputtering use different power sources and can sputter different types of 
materials. The sputtering process is based on the ion bombardment of the target towards the 
substrate, resulting in the formation of films, as shown in Figure 18. The process is done in a 
high-vacuum chamber (less than 1 x 10-6 Torr) to get high crystal quality. Different parameters 
can be controlled during the sputtering process, such as sputtering pressure, bias voltage of 
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substrate, temperature, target-to-substrate distance, the flow rate of process gas, deposition 
time and sputtering power.  
 

 
 

Figure 18. Schematic diagram of the sputtering process [94]. 

 
 

6. SUMMARY AND FUTURE OUTLOOK 
 

From this review, it can be concluded that the properties of GaN films are dependent on the 
parameters and the methods used to grow GaN. The reviewed GaN growths use AlN as the 
buffer layer deposited at high temperature (500–1045°C) using MBE, MOCVD and HVPE. 
However, the high temperature is incompatible with the industrial back-end processes [55]. 
Thus, a much lower deposition temperature is preferable as it also can prevent thermal 
diffusion into the substrate from the Al [17]. Recently, the sputtering method is proposed for 
industrial applications as it offers low cost, produce no harmful waste and can easily manipulate 
the growth parameters [95]. DC or RF reactive sputtering has been commonly used to grow AlN 
films due to its simplicity and high productivity [96,97]. Furthermore, high-quality AlN film can 
be deposited using sputtering at low temperature (room temperature) [56]and on unheated 
silicon substrates[97]. Several authors also reported successful GaN growth using sputtering, 
without any substrate heating or post-deposition annealing temperature [98], at room 
temperature [99] and using substrate temperatures of 400°C and 700°C [100].  
 
By using DC magnetron sputtering, some problems may occur that result in the difficulty in 
obtaining high crystal quality of the films, such as arcing [101], where its presence due to 
abnormal electrical discharge comes from the high resistance of the Al target surface during 
nitridation [102], as well as many impurities especially oxygen would be present in the GaN 
layer when using sputtered AlN as the buffer layer, resulting in leakage currents in the buffer 
layer, which highly deteriorate the breakdown character and prevent the use of GaN for a wide 
variety of electronic applications [103]. However, Ait Aissa et al. demonstrated that DC 
magnetron sputtering and HiPIMS can grow AlN film on a silicon substrate with dense and 
smooth properties and at low deposition temperature and that the stoichiometry and structural 
quality can be easily controlled [101]. Sato et al. found that by using pulsed plasma as an 
excitation source instead of using an excimer laser for pulsed sputtering deposition, the 
crystalline quality of the films can be improved [56]. Hu et al. also demonstrated that by 
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optimizing the technique/systems to grow the GaN-related LED layers, the good crystal quality 
of the fabricated films can be achieved [104]. These studies indicated that by optimizing the 
sputtering conditions, then a high crystal quality of GaN can be obtained. 
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