The influence of nitrogen pressure on the structure of a-CN_x thin films prepared by

PLD method.

Kamal Kayed*

Physics department - Science faculty - Damascus University - Syria.

*E-mail: khmk2000@gmail.com

Abstract

The structure of amorphous CN_X thin films have a variety of chemical bond, and the

investigating of these bonds ratios is very important because these ratios determine the

appropriate technical use of these films. Therefore, In this paper we aim to investigate the

relation between the conditions of preparation (deposition pressure) of a-CN_x thin films

prepared using PLD (Pulsed Laser Deposition) method and the film's structure. Results have

shown that the deposition pressure variation does not affect the concentration in the same

manner for all bonds in the film. Moreover, the sp² cluster size and the order degree are

related to the numerical value of the deposition pressure

Keywords: XPS spectroscopy; Carbon nitride; Raman spectroscopy; Laser, Deposition.

1. Introduction

Amorphous CN_X thin films are characterized by a mix of CN bonds with different patterns

of sp² and sp³ hybridization. These thin films characteristics depend mainly on the percentage

of these two phases [1-2]. The importance of the amorphous phase arises because

synthesizing of Cubic-C₃N₄ phase requires applying high degrees of heat, which does not fit

most applications.

Therefore, it is resorted to produce amorphous CN_X thin films with high content of CN

bonds with SP3 hybridization, which have characteristics similar to the ones contained in

Cubic-C₃N₄, which can be prepared also at room temperature [1-2].

Amorphous carbon (a-C) and amorphous CN_X thin films (a- CN_X) has the attention of the scientific community [1-9] because they have very important structural properties [4, 6-9]. Moreover, these kinds of films have a variety of uses such as optoelectronics, protective coatings, making electronic elements, capacitors, infra-red detectors and gas sensors.

In this work, we investigate how deposition parameters such as deposition pressure affect the micro structure of a- CN_x thin films prepared using pulsed laser.

2. Materials and Methods

The a-CNx thin films have been deposited onto n-type Si (100) and glass substrates. The films were prepared using Nd:YAG pulsed laser (RD-YG-300/ λ = 1064 nm, laser flounce = 12.8 J cm⁻²). Five samples of carbon nitride thin films were prepared In an environment of pure nitrogen (purity 99.999%). The N₂ pressures varied from 10 to 1000 Pa. Raman spectra of the samples were measured using a Jobin-Yvon T64000 (operating with a 514.5 nm line of argon laser with resolution 2 cm⁻¹). The chemical composition of our films were measured by using a LEYBOLD LHS11 MCP- XPS spectroscopy. The SEM photos was recorded by using a JEOL-type JSM 6400F scanning electron microscopy.

3. Results and Discussion

A detailed description of the spectra obtained by all used spectroscopes compressively is mentioned in our previous works [4,6-9].

Fig. 1 plots XPS spectrum of the sample prepared using pressure of 100 Pa. In this figure we distinguish the peaks C1s, O1s and N1s.

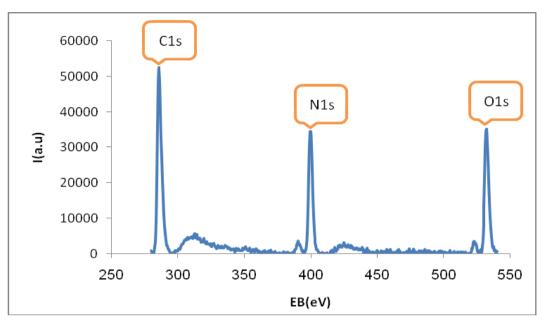


Fig. 1: XPS spectrum of the sample prepared using nitrogen pressure of 100 Pa.

 $C(sp^2)$ -C, $C(sp^2)$ -N and $C(sp^3)$ -N bonding ratios have been calculated for all samples. The calculation was done using the method explained in our previous work [4]. Table 1 contains the $C(sp^2)$ -C, $C(sp^2)$ -N and $C(sp^3)$ -N bonding ratios for all sample.

Table 1: The $C(sp^2)$ -C, $C(sp^3)$ -N and $C(sp^2)$ -N bonding ratios for all samples.

Pressure (Pa)	[C-C(sp ²)]	[C-N(sp ²)]	[C-N(sp ³)]
10	36.496	20.045	8.461
100	27.370	23.298	11.125
300	34.259	18.696	10.350
500	47.177	21.450	7.885
1000	48.052	19.573	7.016

What distinguishes our work from previous works [6, 8, 9] is that the deconvolution process of C1s core level spectra allows access to a specified number of peaks which in turn

allow calculation of the total concentrations of each bond not only the calculation of the relative areas of all peaks in C1s core level spectra.

Fig. 2 shows the concentration of $C(sp^2)$ -C bonds as a functions of deposition pressure. We notice that as pressure increases, the concentration of $C(sp^2)$ -C bonds decreases at low pressure (10–100 Pa) and increases when moving to higher pressures. An opposite behavior can be observed in the case of $C(sp^3)$ -N bonds (fig. 3).

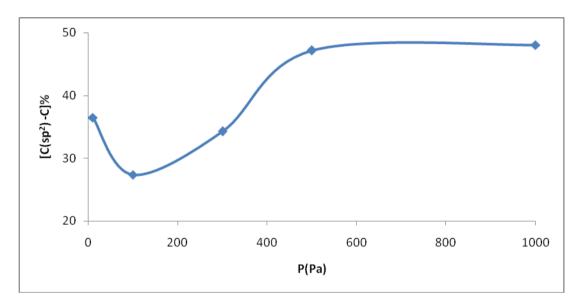


Fig. 2. The concentration of C(sp²)-C bonds as a functions of deposition pressure.

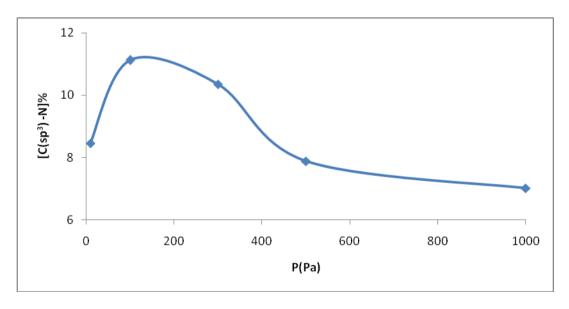


Fig. 3. The concentration of C(sp³)-N bonds as a functions of deposition pressure.

There is no specific behavior in the case of $C(sp^2)$ -N bonds(fig. 4), where we notice that the concentration swings around an average value (approximately 21%).

The decreased concentration of $C(sp^2)$ -N and $C(sp^3)$ -N bonds indicates that the nitrogen content in the films decrease when pressure increases.

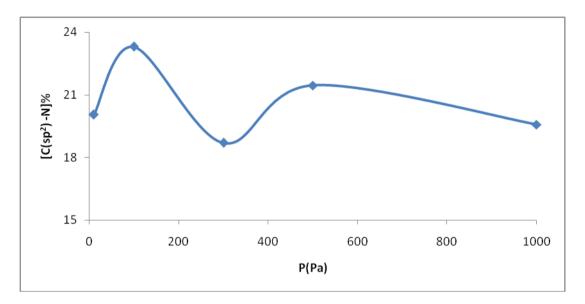


Fig. 4: The concentration of C(sp²)-N bonds as a functions of deposition pressure.

Results obtained from previous curves imply that the use of high pressures is not beneficial to the forming each of the N–C (sp²) or N–C (sp³) bonds in the films. This may be the result of the increased rate of inelastic collisions between ions in high pressures during the film growth process.

By comparison with electron microscopy images (fig. 5), one can notice that, the sp^2 clusters size increases with increasing $C(sp^2)$ -N bonds concentration and decreases with the decreasing of these bonds. This result indicates that the $C(sp^2)$ -N bonds contribute to the formation of sp^2 different configurations (hexagonal rings or chains).

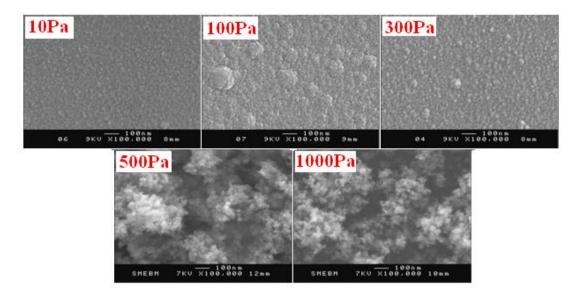
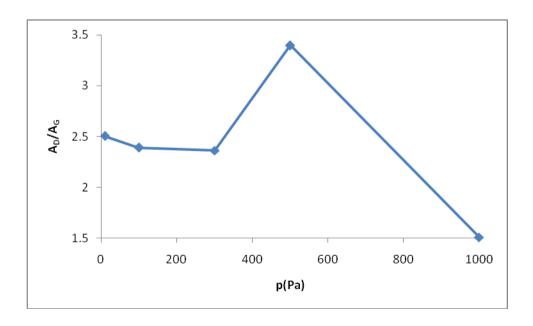



Fig. 5: SEM photos of the prepared films.

Fig. 6 illustrates the order degree A_D/A_G as a function of nitrogen pressure. We notice that, in general, the order degree decrease as the deposition pressure increase with the exception of the case of the sample prepared at 500 Pa. The ratio A_D/A_G decrease indicates that the order phase (chains) ratio is increased at the expense of the disorder phase (hexagonal rings) ratio. On the other hand, the increase in this ratio indicates exactly the opposite.

Note: Accepted manuscripts are articles that have been peer-reviewed and accepted for publication by the Editorial Board. These articles have not yet been copyedited and/or formatted in the journal house style.

Fig. 6: The order degree as a function of deposition pressure.

4. Conclusion

Amorphous CN_x thin films were deposited onto unheated silicon (100) and glass substrates using pulsed laser deposition of graphite tablets in N_2 gas atmosphere. The samples were analyzed by XPS, Raman and SEM Spectroscopes. The results showed that the nitrogen ratio decrease as the deposition pressure increases. We found that the $C(sp^2)$ -N bonds contribute to the formation of sp^2 configurations (hexagonal rings or chains). It was found that the order degree decreases as the deposition pressure increase in the area of low pressure. There is no obvious relationship between order degree and deposition pressure in the case of higher pressure, where we found that, the ratio of chains number to hexagonal rings number is sensitive to the numerical value of the applied pressure.

Acknowledgments

We would like to thank the Director General of Syrian Atomic Energy Professor I. Othman, Commission for encouragement and support; and Dr. A. Alkhawwam, and Dr. B. Abdallah for assistance.

References

- [1] I. Bertoti, T. Szorenyib, F. Antoni, E. Fogarassy, "The effect of process parameters on the chemical structure of pulsed laser deposited carbon nitride films," Diamond and Related Materials, vol. 11, pp. 1157 –1160, 2002.
- [2] SE. Rodil, "Infrared spectra of amorphous carbon based materials," Diamond & Related Materials, vol. 14, 1262-,1269.
- [3] M. Harun, N. Salleh, Alias, M. Mohamed, M. Rahman, Hamzah, K. Umar, N. Othman, "Removal of Oxidative Debris from Chemically Functionalized Multi-walled Carbon Nanotube," International Journal of Nanoelectronics and Materials, vol. 11, pp. 43-48, 2018.

 [4] K. Kayed, "Effect of nitrogen plasma afterglow on the (1000–1800) cm⁻¹ band in

- FT-IR spectra of amorphous carbon nitride thin films," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 190, pp. 253-258, 2018.
- [5] M. Aono, T. Takeno, T. Takagi, "Structural, electrical, and optical properties of amorphous carbon nitride films prepared using a hybrid deposition technique," Diamond and Related Materials, vol. 63, pp. 120-124, 2016.
- [6] A. Alkhawwam, B. Abdallaha, K. Kayed, K. Alshoufi, "Effect of Nitrogen Plasma Afterglow on Amorphous Carbon Nitride Thin Films Deposited by Laser Ablation," ACTA PHYSICA POLONICA A, vol. 120, pp. 545-551, 2011...
- [7] K. Kayed, Synthesis and properties of Carbon Nitride and Boron Nitride thin films prepared by different techniques, Damascus University Syria, Damascus, PhD thesis, 2010.
- [8] A. Alkhawwam, C. Jama, P. Goudmand, O. Dessaux, A Achari, P. Dhamelincourt, G. Patrat, "Characterization of carbon nitride layers deposited by IR laser ablation of graphite target in a remote nitrogen plasma atmosphere: nanoparticle evidence," Thin Solid Films, vol. 408, pp.15-25, 2002.
- [9] K. Kayed, "Effect of nitrogen plasma afterglow on the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films," spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 199, pp. 242-247, 2018.