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ABSTRACT 

 
We applied the numerical combination of Runge-Kutta and Finite Difference (RKFD) 
scheme for a quantum reflection model of Bose-Einstein condensate (BEC) from a silicon 
surface. It is by the time-dependent Gross-Pitaevskii equation (GPE), a non-linear 
Schrödinger equation (NLSE) in the context of quantum mechanics. The role of cut-off 
potential δ and negative imaginary potential 𝑉𝑖𝑚  is essential to estimating non-interacting 
BEC reflection models. Relying on these features, we performed a numerical simulation of 
the BEC quantum reflection model and calculated the effect of reflection probability R 
versus incident speed 𝑣𝑥 . The model is based on the three rapid potential variations: 
positive-step potential +𝑉𝑠𝑡𝑒𝑝 , negative-step potential −𝑉𝑠𝑡𝑒𝑝 , and Casimir-Polder potential 

𝑉𝐶𝑃 . As a result, the RKFD numerical scheme was successfully set up and applied to the 
quantum reflection model of BEC from the silicon surface. The numerical simulation results 
show that the reflection probability R decays exponentially to the incident speed 𝑣𝑥 . 
 

Keywords: Bose-Einstein Condensate, Gross-Pitaevskii Equation, Quantum Reflection, 
    Casimir-Polder, Quantum Mechanics. 

 

 

1. INTRODUCTION 
 

The first experiment of a Bose-Einstein condensate (BEC), which experienced quantum 
reflection from a surface (e.g., semiconductor), was carried out by Pasquini et al. [1], [2], while 
the theoretical model developed by Scott et al. [3]. The study succeeds in revealing anomalous 
behavior of BEC at low incident speed. However, the saturation effect of reflectivity and its 
relationship to the dynamics of the collective complex is still far from clear, especially in 
describing the characteristics of BEC in kinetic energy and mean-field. The dimensional effect of 
BEC and the geometrical of semiconductors, i.e., nonplanar and micro-engineered surfaces for 
quantum reflections of BEC from a curved cylinder surface, may be seen as practical tools for 
further investigation of these unsolved anomalous behaviors. Then, the mean-field theory of the 
Gross-Piteavskii equation (GPE) became the primary framework to model the quantum 
reflection with the single atom Casimir-Polder theory [2]–[5]. 
 
GPE is a class of nonlinear Schrodinger equations (NLSE) with a macroscopic wave function ѱ as 
a tool to characterize BEC at temperatures T far below the critical condensation temperature Tc 
(~ nano Kelvin). One set of GPE includes the potential trap and the mean-field of atom-atom 
interaction in gas that manifests as nonlinear terms. Attractive and repulsive interactions of 
atom-atom are accounted for in the GPE using the focusing constant a, which may be positive 
(focusing: ) or negative (defocusing: ) [6]. Meanwhile, the method to solve GPE is based 
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on a numerical scheme rather than an analytical one. It is due to its mathematical complexity. In 
1995, Ruprecht et al. [7] proposed the Crank-Nicolson method to solve GPE in describing 
inhomogeneous, weakly interacting BEC in small harmonic trap potentials at zero temperature. 
In addition, Bao et al. [8] in 2003 and Bao and Shen [9] in 2005 also achieved the spectral and 
pseudo-spectral methods. For the quantum reflection of BEC, Scott et al. [3] have relied on the 
Crank-Nicolson method in solving GPE. However, for algorithm efficiency, we propose a Runge-
Kutta Finite Difference (RKFD) scheme for the case of BEC that undergoes quantum reflection. It 
was carried out to investigate the characteristics of quantum reflection of BEC from a surface.  

 

2. MATHEMATICAL AND NUMERICAL FORMULATION 
 

2.1 Mathematical Description 
 

Let us consider the quantum reflection of BEC from a surface. We observe them for silicone 
surfaces based on one set of GPE models, which read as: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓𝑗 = −

ℏ2

2𝑚
𝛻𝑗
2𝜓𝑗 + 𝑉𝑗𝜓𝑗 + 𝑔𝑗|𝜓𝑗|

2
𝜓𝑗 .  (1) 

 
where m is the atomic mass, ℏ is the Planck constant, and the indexes 𝑗 refers to 1D, 2D, or 3D 
systems.  The first term on the right-hand side (RHS) of Eq (1) is the kinetic energy, where 𝛻𝑗

2 is 

the Laplace operator. The second term shows the external effect caused by harmonic potential 
trap 𝑉𝑗 . At the same time, the third term represents the atom-atom interaction, where 𝑔𝑗  is the 

interaction constant. For all dimensions systems, they are defined respectively as: 
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W.l.o.g, we reduce (1) into the dimensionless form. It aims to simplify calculations by setting 

normalization conditions ∫ |𝜓|2  𝑑𝑟 = 1 and some scaling parameters in (2). 
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Substitute (2) into (1), and we will go to some steps of mathematical reduction. The 
dimensionless form of GPE can be written as 
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�̃�𝑗  and 𝜅𝑗 are the dimensionless forms of the harmonic trap potential and the interaction 

constant of atom-atom, respectively; both values are: 
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where 𝛾𝑦 = 𝜔𝑦/𝜔𝑥   ;  𝛾𝑧 = 𝜔𝑧/𝜔𝑥, and N is the total number of atoms. 

 
2.2 Potential models 
 
In this paper, we present the RKFD scheme for GPE (3) in a one-dimensional space, 𝑗 = 1𝐷 for      
j = 0 (non-interacting case). The whole discussion deals with the quantum reflection of BEC in 
the context of equations. We set the displacement of the harmonic trap or the ground state BEC 
scene to accelerate it towards the surface.  That is by setting a minimum harmonic trap on the 
surface. Since time t = 0 ms, we replace the harmonic trap along the 𝑥-axis at the point after ∆𝑥. 
It resulted in a scenario where BEC leads to a region of rapid potential energy variation 𝑥 ≥ ∆𝑥. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As seen in Figure 1, the BEC move by the rapid potential variation, where the harmonic trap 
couples with three different potentials (at 𝑥 ≥ ∆𝑥), i.e., 
a. positive-step potential (+𝑉𝑠𝑡𝑒𝑝), it represents the hardwall surface and indicates the classical 

reflection, no scattered or absorption atoms, 
b. negative-step potential (−𝑉𝑠𝑡𝑒𝑝), it represents the weak attractive potential, and 

c. Casimir-Polder (CP) potential, 𝑉𝐶𝑃 = −𝐶4/(𝑥
3(𝑥 + 𝜆′)) where for C4 = 1.6 x 10-55 Jm-4 and ’ is 

100 nm for 87Rb-Si [10]. The atom-atom scattered or absorption model at the surface (during 
a collision) is modeled by the imaginary potential 𝑉𝑖𝑚 and the small offset δ (cut-off) to 
prevent the attractive CP potential varying rapidly near the surfaces. 
 

2.3 RKFD Scheme 
 

To observe the BEC quantum reflection, we solve the complex GPE problem by first discretizing 
the space 𝑥 domain using the understanding of the finite difference method, �̃�(�̃�, 𝜏) → �̃�𝑛(𝜏). 
Hence, we can transform the Laplace operator �̃�2 into a matrix operator D2: 

𝜕2
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1

𝑑𝑥
[
�̃�𝑛+1(𝜏)− �̃�𝑛(𝜏)
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 �̃�𝑛(𝜏)−�̃�𝑛−1(𝜏)

𝑑𝑥
],  

𝜕2

𝜕�̃�2
�̃�(�̃�, 𝜏) =

�̃�𝑛+1(𝜏)− 2�̃�𝑛(𝜏)+ �̃�𝑛−1(𝜏)

(𝑑𝑥)2
 ,  

Figure 1. The potential scenario of the 1D quantum reflection model of BEC, at minimum of harmonic 
trap is 𝑉𝑗 + 𝑉𝑠  , where 𝑉𝑠 is the types of surface potential (+𝑉𝑠𝑡𝑒𝑝 , −𝑉𝑠𝑡𝑒𝑝 and 𝑉𝐶𝑃). 
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where 𝑑𝑥 is the change of spatial grid points. 
 
Using the definition of matrix operator D2 in Eq (4), we can quickly write the RHS of GPE (3) 
into, 

𝜕
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2
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Subsequently, we compromise the 𝑓(�̃�𝑛, 𝜏) function in (5) with the fourth order Runge-Kutta 

method. We write their solution as follows: 

�̃�𝑛(𝜏 + ∆𝜏) = �̃�𝑛(𝜏) + 
1

6
 ∆𝜏 (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) (6) 

 
𝜏 is the time, ∆𝜏 is the step size, and 𝐾 is a function of the average slope over the interval, which 
reads as, 

𝐾1 =  𝑓(�̃�𝑛, 𝜏)  

𝐾2 = 𝑓 (�̃�𝑛 +
∆𝜏

2
𝐾1)  
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2
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𝐾4 =   𝑓(�̃�𝑛 + ∆𝜏 𝐾3) 

  
We refer to this as one set of RKFD schemes, in which the GPE (3) solution for BEC quantum 
reflection from a silicon surface is present at the end of this manuscript. 
 
3. FLOWCHART AND ALGORITHM 
 

Now, we can observe the quantum reflection model of BEC from solution (6) by some stages 
shown in flowcharts (see figure 2) or use the following simulation algorithm. 

 

a. Initialize parameters, such as the atomic mass 𝑚, the Planck constant ℏ, the longitudinal 
trap frequency 𝜔𝑥, the center of potential trap Δ𝑥, normalize constant 𝐴, and wave number 
𝑘. At the same time, set the initial condition of the envelope 𝜓 as Gaussian wave function: 

𝜓(𝑥, 0) ≈ exp (−
𝑚𝜔𝑥

2ℏ
𝑥2), as well as the potential trap 𝑉.  

b. Provide the change of spatial grid points 𝑥 (step size ℎ = 𝑑𝑥), the scaling unit 𝑎𝑥, and the 
center of the initial gaussian wave function 𝑥0. 

c. Transform the dimensionless Laplace operator �̃�2 using the finite difference algorithm. We 
record the results as a matrix operator D2. If we are in python, it can be clear by 
scipy.sparse.diags() toolbox. 

d. Rewrite the RHS of GPE (3) with the matrix operator D2 features. Subsequently, provide the 
time interval for snapshot 𝑑𝑡, the initial (𝑡0) and the final time (𝑡𝑓).  

e. Integrate GPE (5) from initial (𝑡0) to final time (𝑡𝑓) using Runge-Kutta method to produce 

the numerical solution of 𝜓(𝑥, 𝑡). Again, if we are in python, we can solve it by using 
integrate.solve_ivp toolbox. 



International Journal of Nanoelectronics and Materials 
                         Volume 16, No. 2, April 2023 [461-468] 

 

 

465 

 

f. Plot the numerical solution 𝜓(𝑥, 𝑡) in 𝑥-coordinate. On the other hand, we can record the 
simulation along time 𝑡. 

 
Figure 2. The flowchart of the algorithm for the numerical simulations 

 

4. SUMMARY AND DISCUSSION 
 

This section presents the quantum reflection simulations of BEC single atom 87Rb from the 
silicon surface through the GPE solutions of (6) (see Figures 3). We create the benchmark by the 
compare our RKFD scheme simulation results with the Crank-Nicolson method used by Scott et 
al. [3] and the fourth-order Runge-Kutta method by Halif [10] in solving the GPE (3). Therefore, 
we selected the same parameters in references [3] and [10]. It is related to offset δ dan 
imaginary potential 𝑉𝑖𝑚 as an essential feature to observe the correspondence of reflection 
probability R to incident speed 𝑣𝑥  of a single atom 87Rb moving toward to Si surface using the 
Gaussian wave function, 

𝜓(𝑥, 0) = (
𝑚𝜔𝑥

ℏ
)1/4exp (−

𝑚𝜔𝑥

2ℏ
𝑥2)  (7) 

 
(Note: the quantum reflection from Si surface).  
 
The role of offset δ is to avoid the region where the CP potential model varies rapidly near the 
surface (𝑥 → 0,  𝑉𝐶𝑃 → −∞). Regarding that, the imaginary potential 𝑉𝑖𝑚 is the absorption model 
of atom-atom scattered on the surface. We found that recognizing the imaginary potential 𝑉𝑖𝑚 
reduces or removes the transmission process. In other words, it avoids interference when the 
value reaches the end of the box (or surface). Without the imaginary potential 𝑉𝑖𝑚 , it would 
create an artificial reflection. For more knowledge about the role of offset δ dan 𝑉𝑖𝑚 imaginary 
potential, we suggest reading ref [10]. 
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Figure 3. Reflection probability R versus incident speed v (mm/s) of non-interacting 87Rb and 23Na BEC 
in three different cases: Positive step potential, Negative step potential, and Casimir-Polder potential. 

 
After observing the δ offset role and the 𝑉𝑖𝑚 imaginary potential effect, we calculate the related 
reflection probability R to incident speed 𝑣𝑥 for a single atom 87Rb moving toward the Si surface. 
In classical reflection context, i.e., the positive-step potensial +𝑉𝑠𝑡𝑒𝑝, the BEC is totally reflected 

by hard wall. Meanwhile, for negative-step −𝑉𝑠𝑡𝑒𝑝 and 𝑉𝐶𝑃 Casimir-Polder potential, we found 

that only a few atom-atom is reflected, where the atom-atom transmitted by the imaginary 
potential 𝑉𝑖𝑚 are absorbed in the surface. However, it is slightly different compared to the 
theoretical model of Scott et al. [3] that uses 23Na atoms. The relation of reflection probability R 
versus incident speed 𝑣𝑥 for a single atom 87Rb moving toward Si is lower than for 23Na by a 
factor of ~10 on  𝑣𝑥 = 1 mm/s. It is due to the mass of 87Rb atom much greater than 23Na atom. 
Hence, we assess that the RKFD scheme is good enough to be used in BEC quantum reflection 
studies from a surface. 
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