

Defective TiO₂ with Intrinsic Point Defects for Photocatalytic Hydrogen Production: A Review

Sawsan Abdullah Abduljabbar Anaam^{1*}, Hashim Saim^{1*}, Mohd Zainizan Sahdan¹, Adel Al-Gheethi²

¹ Microelectronics & Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

² Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

* Corresponding author: hashim@uthm.edu.my, saanaam22@yahoo.com

Abstract

Titanium dioxide (TiO₂) has been intensively investigated for solar hydrogen conversion via photocatalytic and photoelectrochemical water splitting. However, the performance of TiO₂ photocatalyst for hydrogen generation is low due to the rapid electron-hole recombination and its wide band gap (3.0-3.2 eV) which is only feasible for UV light absorption of solar spectrum. There are various strategies have been used for TiO₂ modification to harvest the sunlight and improve the surface chemical reaction between TiO₂ and H₂O for water splitting. Among the TiO₂ modification strategies, intrinsic point defects such as vacancies and interstitials on TiO₂ surface have been proven to improve the TiO₂ properties for photocatalytic activity. In this article, the recent progress achieved in defective TiO₂ with intrinsic point defects for photocatalytic hydrogen evolution and photoelectrochemical water splitting has been reviewed. The fabrication methods of defective TiO₂ along with their structural, optical, and charge carrier properties have been introduced. It has appeared that the intrinsic point defects are a promising strategy to improve the performance of TiO₂ for photocatalytic hydrogen production, and more efforts are still needed to improve the TiO₂ performance for photocatalytic hydrogen production in this area of research.

Keywords TiO₂ Surface; vacancies; interstitials; photoelectrochemical water splitting; Photocatalytic hydrogen evolution; intrinsic point defects.

Contents

1.	Introduction	. 2
2.	Principles of intrinsic point defects in TiO ₂	. 3

Note: Accepted manuscripts are articles that have been peer-reviewed and accepted for publication by the Editorial Board. These articles have not yet been copyedited and/or formatted in the journal house style.

3.	Preparation methods for intrinsic point defects on ${\sf TiO}_2$ 4
.4 de	fects
	4.1 Structural properties
	4.2 Optical properties11
	4.3 Transfer charge properties
5.	Photocatalytic hydrogen production15
	5.1 Photocatalytic hydrogen evolution16
	5.2 Photoelectrochemical water splitting19
6.	Summary and perspective
Re	ferences

1. Introduction

Photocatalytic hydrogen production is being considered as a promising solution for supplying environmentally friendly and sustainable energy. There are two methods to produce hydrogen directly from the sunlight: photocatalytic (PC) and photoelectrochemical (PEC) water splitting [1, 2]. Semiconductor photocatalysts has been considered to be used for the conversion of solar energy to chemical energy. When the photocatalyst absorbs photons of sunlight with energy greater than or equal to its band gap, the electrons are excited from the valance band (VB) to the conduction band (CB) and then the photoinduced electron-hole pairs are formed. The holes oxidize the water to oxygen and the electrons reduce protons (H⁺) to hydrogen, respectively[3]. However, most of semiconductors have ability to absorb UV light which constitute only 4% of solar spectrum. Therefore, in order to improve the solar hydrogen conversion, a modification of photocatalyst properties should be conducted to improve the visible light absorption, which constitute 43% of solar energy. Besides, low-cost and stable semiconductors are required [4, 5].

Titanium dioxide (TiO₂) is one of the most attractive materials which is used as a photocatalyst for hydrogen production because it is a non-toxic, cheap, abundant and stable in aqueous solutions. Besides, it has the right conduction and valence band edge position for water reduction and oxidation. However, TiO₂ still has some limitations as a photocatalyst in terms of wide band gap 3.0 eV (415 nm) for rutile and 3.2 eV (380 nm) for anatase. Therefore, it only absorbs light in the ultraviolet (UV). Moreover, the photogenerated charge carrier recombination of TiO₂ is high[4, 6]. Thus, due to the low harvesting of sunlight and rapid

recombination of charge carrier, TiO_2 is not efficient enough for hydrogen production. In order to overcome these limitations, various strategies have been used to improve the photocatalytic hydrogen production by water splitting. The metal or non-metal doping on TiO_2 is used to enhance the photocatalytic activity of TiO_2 . However, the high concentration of dopants creates recombination center and the low concentration of dopants is not enough for the visible light absorption [7, 8, 9, 10]. In addition, metal loading such as Ag or Au nanoparticles is used to enhance the absorption of visible light due to the surface plasmon resonance[11, 12]. The metal co-catalyst like Pt and Pd prevent the charge carrier recombination. However, all these metals are expensive to be used for enhancing the absorption of TiO_2 [13, 14]. Furthermore, semiconductor heterojunction is a common method to modify the photocatalytic properties of TiO_2 . In this process, p-type and n-type semiconductors are contacted, the electrons and holes are diffuse and form a built-in electrical potential. The formation of the electrical field might enhance the charge separation and improve the photocatalytic activity of TiO_2 [15]. Nonetheless, the accumulation of electrons might create a photo-corrosion for one of semiconductors or both of them [16].

Apart of the above-mentioned strategies, intrinsic point defects have attractive attention to promote the photocatalytic properties of TiO_2 for hydrogen production. These defects have essential impact for improving TiO_2 performance for H₂ generation. For instance, oxygen vacancies/ Ti^{3+} extend the light absorption to visible light and enhance the charge carrier separation [17, 18], while titanium vacancies increase the charge mobility[19]. Furthermore, oxygen vacancy-defected/ titanium vacancy-defected TiO_2 on anatase phase increase the photocatalytic activity of TiO_2 for hydrogen production[20].

This review focuses on the recent developments in intrinsic point defects in TiO_2 for photocatalytic and photo-electrochemical hydrogen production. In addition, the basic principles and preparation methods of intrinsic point defects in TiO_2 are discussed. The structural, optical and charge transfer properties are reviewed.

2. Principles of intrinsic point defects in TiO₂

Intrinsic point defect of TiO₂ has been considered in terms of ionic and electronic defects. The ionic defects in TiO₂ include oxygen vacancies (V_o), titanium interstitials (Ti_{int}), titanium vacancies (V_{Ti}), and oxygen interstitials (O_{int}), while the electronic defects involve electrons and electron holes as shown in Figure 1(a). The electrons are located on Ti³⁺ ions in their

lattice sites, whereas, the electron holes are located on lattice sites of O^- ions. These defects occur due to the introduction of disorder in the crystal pattern of TiO₂ [21, 22, 23, 24]. Thus, nonstoichiometric titanium dioxide is considered to be either TiO_{2-x} with oxygen deficient, or TiO_{2+x} with titanium deficient. Oxygen vacancies and titanium interstitials are donors of electrons and form donor level in the electronic structure of TiO₂. The existence of the donors shifts the Fermi level towards the lower part of the band gap. In contrast, the titanium vacancies and oxygen interstitials are acceptors and form acceptor level in TiO₂. As a result, the presence of the acceptors moves the Fermi level towards the upper part of the band gap. For instance, the oxygen vacancies and titanium vacancies form energy levels in TiO₂ at 1.18 and 1.15 eV, respectively [25, 23, 24, 26, 27, 28].

Additionally, defects enhance the photocatalytic activity of TiO₂. For instance, titanium vacancies act as surface active sites for adsorption of water on TiO₂ surface. Titanium vacancies are needed to transfer electrons from water molecules to TiO₂ surface in order to enhance the oxidation reaction [29]. As depicted in Figure 1(b), when the water molecules are adsorbed on the specific surface-active site (titanium vacancies), the titanium vacancies have a strong electron affinity and the ability to donate electron holes. Active complexes of titanium vacancies are formed when electrons holes transfer to adsorbed water species. These active complexes are metastable and decomposed into gaseous oxygen and hydrogen ions[26].

Figure 1: (a) Intrinsic point defects in TiO_2 [19]. (b) titanium vacancies(V_{Ti}) in TiO_2 for charge transfer and water splitting [26].

3. Preparation methods for intrinsic point defects on TiO₂

Several strategies were employed to form the intrinsic point defects on TiO₂ as summarized in table 1. Ti³⁺/oxygen vacancies defects can be fabricated using various methods such as hydrogenation, and reduction. The thermal treatment with hydrogen gas (hydrogenation) is used to Ti³⁺/oxygen vacancies formation. Amano et al. [30] calcined TiO₂ (anatase phase/rutile phase = 3.4/96.6 wt %) under hydrogen gas. TiO₂ was treated in calcination temperature range of 300-1100 °C under hydrogen gas flow rate of 50 mL/ min at atmospheric pressure, and then the samples were cooled down to room temperature. Hydrogen treatment at calcination temperature 500 °C formed Ti³⁺, whereas the density of electrons was enhanced at 700 °C. Liu et al. [31] fabricated the T^{3+} oxygen vacancies in TiO₂ using a high pressure gas with temperature treatment. The formation of Ti³⁺ and oxygen vacancies on TiO₂ nanotubes were fabricated by heat treatment with Ar or Ar/H₂ under atmospheric pressure, and high H₂ pressure. The Ti^{3+} formation was recorded at 500 °C under hydrogen pressure 20 bar. in another study, the oxidation of TiH_2 in H_2O_2 to form Ti^{3+} on TiO_2 was conducted by Liu et al. [32]. Ti^{3+} self-doped TiO_2 in anatase phase was synthesized by oxidation of TiH₂ in H₂O₂ which followed by the calcination temperature (300-600 $^{\circ}$ C), calcination time (2-4 h) and flow rate of argon was at 20 mL min⁻¹. Grabstanowicz et al. [33] also used the oxidation of TiH₂ in H₂O₂ to form Ti^{3+}/TiO_2 in rutile phase as directed in Figure 2(a), the gray TiH₂ reacted with H₂O₂ and formed yellow gel which calcined at 630 °C for 3 h. under argon flow to form black Ti^{3+/}TiO₂ powder. Wei et al. [34] synthesized Ti³⁺ selfdoped anatase TiO_2 by using H_2O_2 with hydrothermal method. It was observed that when the hydrothermal reaction time was 12 h and the amount of H_2O_2 was 100 µL, oxygen vacancies was formed after calcination with N₂.

The reduction method has also been utilized for intrinsic point defects formation on TiO₂. The utilization of NaBH₄ to form Vo/Ti³⁺ on TiO₂ have been reported by many authors in the literature[35, 36, 37, 38,39, 40, 41, 41,]. Xing et al. [38] used Solvo-thermal method with NaBH₄ for Ti³⁺/oxygen vacancies formation on TiO₂. After adding 0.13g of NaBH₄ as reduction agent, Ti³⁺/oxygen vacancies were formed. TiO₂ powder with different amount of NaBH₄ was used to form Vo/Ti³⁺ by hydrothermal method. Addition of 12 g of NaBH₄ to TiO₂ exhibited the highest photocatalytic degradation efficiency of methylene blue [39]. Tian et al. [40] synthesized TiO₂ nanobelts with Vo/Ti³⁺ by using NaBH₄ with heat treatment at 380

(2)

In Press, Accepted Manuscript – Note to user

°C for 24 h. It was claimed that NaBH₄ reduced Ti^{4+} to Ti^{3+} as is shown in the following reaction (1) and (2).

$$NaBH_4 + 8OH^- \rightarrow NaBO_2 + 8e^- + 6H_2O$$
(1)

$$Ti^{4+} + e^- \rightarrow Ti^{3+}$$

Kang et al. [41] used NaBH₄ as a reduction agent to form oxygen vacancies on the surface and interior of the TiO₂ nanotube arrays (NTAs). NTAs were fabricated by anodizing a Ti foil in ethylene glycol solution including NH₄F (0.3 wt%) and H₂O (2 vol%) at 80V for 30 min with a graphite cathode. The nanotube arrays were annealed at 450 C for 3 h. To form the oxygen vacancies, NTAs were dipped in NaBH₄ at room temperature for different times. Ariyanti et al. [42] synthesized defective TiO₂ with oxygen vacancies. TiO₂ nanoparticles were mixed with NaBH₄ and then heated at temperature in the range 300-450 °C with Ar. The color of TiO₂ has changed when the treatment temperature was changed as shown in Figure 2(b).

Figure 2: (a) Ti^{3+} self-doped rutile TiO_2 by oxidation of TiH_2 in $H_2O_2[33]]$. (b) Ti^{3+} self-doped TiO_2 by NaBH₄ [42]. (c) Synthesis of p-type TiO_2 by atomic layer deposition[43] [51]. (d) Formation of TiO_2 p-n homo-junction by insitu decorating n-type TiO_2 QDs on p-type TiO_2 sheets [20].

In addition, there are other methods which have been used to form the intrinsic defects. Blue Ti^{3+} self-doped TiO_2 nanoparticles with anatase and rutile phases was fabricated by solvothermal method [44]. Sasikala et al.[45] synthesized Ti^{3+} nanoparticles by various methods which were solvothermal, sonochemical and polyol methods. Saputera et al. [46] used three different methods to synthesize TiO_2 with Ti^{3+} and oxygen vacancies defects. Reduction, calcination, and hydrogenation methods were used to fabricate the nanoparticles

with the defects. Ice-water Quenching and Imidazole(as reducing agent) also were utilized for preparation of intrinsic defects [46, 47].

In comparison with Ti³⁺self-doped TiO₂ and introducing oxygen vacancies which exhibits ntype properties, few studies have been conducted for the formation of un-doped p-type TiO₂ with titanium vacancies or oxygen interstitials. Wang et al. [19] formed TiO₂ with titanium vacancies by solvothermal method. The reaction of tetrabutyle titanate in ethanol-glycerol mixture formed V_{Ti} after calcination treatment. V_{Ti} was formed when 20 mL glycerol and 60 mL ethanol were used and then the product was calcined at 470 °C for one hour. In another study, V_{Ti} was formed in rutile TiO₂ by thermal oxidation at annealing temperature 1323 K for \sim 3450-3500 h and under oxygen pressure = 75 kPa [49, 50]. Bhowmik et al. [51] synthesized undoped anatase p-type TiO₂ by sol-gel method, and then was deposited on thermally oxidized p-type Si substrate by drop coating and then annealed in air at 450 °C for 3 hrs. However, it was not explained if the p-type properties of TiO₂ either due to titanium vacancies or oxygen interstitials existence. Iancu et al. [43] synthesized undoped p-type TiO₂ films with oxygen interstitial defects films by atomic layer deposition (ALD). Three types of TiO₂ films were deposited: two un- doped TiO₂ were deposited at 200 and 250 °C, and Ndoped TiO₂ was deposited at 250 °C. One sample of each type was left without postdeposition treatment. The rest samples of each type were annealed at temperature ranged from 400 to 900 °C. Some samples were annealed with nitrogen gas, while others were annealed with oxygen gas. The post-deposited samples exhibited p-type conductivity, which contributed to the presence of oxygen interstitials. Then TiO₂ p-n homojunction diodes were fabricated by a lithography method on silicon wafer as shown in Figure 2(c).

Besides, there are few studies which have been focused on synthesis of intrinsic donor and acceptor defects on TiO₂ simultaneously. Pan et al. [20] fabricated TiO₂ p-n homojunction by decorated n-type oxygen-defected TiO₂ on p-type titanium-defected TiO₂. The source of n-type TiO₂ was added to Titanium glycerolate (TiGly) as presented in Figure 2(d). Then the resulting powder of oxygen-defected TiO₂/titanium-defected TiO₂ was calcined in air at 470 °C. Moreover, the titanium vacancies with titanium interstitials can cause defects on TiO₂. Wu et al. [24] synthesized titanium vacancies-titanium interstitials/TiO₂ by sol gel method with UV light pre-treatment. The titanium vacancies and titanium interstitials were formed when TiO₂ nanoparticles were treated with UV light and its color changed from pale blue to yellow.

Table 1. Synthesis, properties and applications of defective TiO₂ with intrinsic point defects

Fabrication method	Phase	Morphology	Defects	Application	Reference
Hydrogenation of TiO ₂	Pure rutile or mixed rutile and anatase phase	TiO ₂ particles and films.	Ti ³⁺ ions/ oxygen vacancies	Water oxidation	[30]
Hydrogenation of TiO ₂ with high pressure	Anatase	TiO ₂ nanotubes	Ti ³⁺ ions/ oxygen vacancies	Photocatalytic hydrogen production	[31]
Oxidation of TiH ₂ in H ₂ O ₂	Anatase	Nanoparticles	Ti ³⁺ ions/ oxygen vacancies	Photodegradation of Methylene blue (MB)	[32]
Oxidation of TiH ₂ in H ₂ O ₂	Rutile	Nanoparticles	Ti ³⁺ ions	Photodegradation of organic species in water	[33]
Hydrothermal method	Anatase	Nanorod-type microstructure	Ti ³⁺ ions/ oxygen vacancies	photocatalytic hydrogen production	[34]
Reduction with NaBH ₄	Anatase	Nanoparticles	Ti ³⁺ ions/ oxygen vacancies	Photodegradation of methyl orange and phenol	[38]
Reduction with NaBH ₄	Mixed anatase and rutile phase	Nanoparticles and hierarchical structures	Ti ³⁺ ions/ oxygen vacancies	Photodegradation rate of methylene blue	[39]
Reduction with NaBH ₄	anatase	Nanobelts	Ti ³⁺ ions/ oxygen vacancies	Photodegradation of methyl orange and water splitting for hydrogen production	[40]
Reduction with NaBH ₄	Anatase	Nanotube arrays	Ti ³⁺ ions/ oxygen vacancies	photoelectrochemical water splitting	[41]
Reduction with NaBH ₄	Anatase	Nanoparticles	Ti ³⁺ ions/ oxygen vacancies	Rhodamine B photodegradation	[42]
Solvothermal method	Anatase	NM	Titanium vacancies	Photodegradation of organic pollutants and photocatalytic hydrogen production	[19]
Thermal oxidation	Rutile	NM	Titanium vacancies	NM	[49, 50]
Sol-gel method	Anatase	Thin film	P-type TiO ₂	Acetone detection	[51]
Atomic layer deposition	Rutile	Thin film	Oxygen interstitials	As homojunction diode	[43]
Decorating n-type TiO ₂ QDs on p-type TiO ₂ sheets	Anatase	Particles	P-n homojunction(oxygen and titanium vacancies)	Photoelectrochemical and photocatalytic hydrogen generation	[20]
Sol gel method with UV light pre-treatment	Anatase	Nanoparticles	Titanium vacancies and titanium interstitials	Photocatalytic hydrogen production	[24]

NM: Not Mentioned.

4. Properties of defective TiO₂ with intrinsic point defects

4.1 Structural properties

The intrinsic defects are characterized by different techniques such as X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), and Raman spectrometry. Xing et al. [38] used solvothermal method with NaBH₄ for Ti³⁺/oxygen vacancies formation on TiO₂. After adding 0.13 g NaBH₄ as reduction agent, the samples were washed with HCl. XPS was used to detect the existence of Ti³⁺ and oxygen vacancies. As shown in figure 3, after washing the samples with HCl, the peak 458 eV of Ti 2p XPS spectra showed the presence of Ti³⁺. Moreover, peak 531.8 eV on O 1s XPS spectra was related to oxygen vacancies formation, respectively.

Figure 3. XPS spectra of Ti^{3+} self-doped TiO_2 : (a) Ti2p and (b) O1s XPS spectra, the red line of XPS spectra for pure TiO_2 and the black for reduced TiO_2 with 0.13 g NaBH₄[38].

Ti³⁺ defects which formed in mesoporous black TiO₂/graphene assemblies were investigated in the literature. The XPS spectrum of Ti 2p1/2 and 2p3/2 showed peaks at 463.6 and 457.8 eV which can be assigned to Ti^{4+} . Meanwhile, there were two peaks at 462.7 and 457.0 eV which corresponded to the Ti 2p1/2 and Ti 2p3/2 peaks of Ti³⁺ species. According to O 1s XPs spectrum, two peaks at 529.8 and 532.1 eV were used as indication for Ti-O and the -OH group. The XPS spectrum of Ti 2p and O 1s were indicated that the surface hydrogenation successfully formed Ti^{3+} ions which enhanced the visible light absorption [18]. Yin et al. [52] studied the chemical composition of self-doped TiO₂ hierarchical hollow spheres by XPS spectrum. The study observed that after the TiO₂ was reduced by NaBH₄, the Ti 2p peak shifted to lower binding energy which can be due to the formation of Ti³⁺ species . The O 1s peak shifted from 529.8 to 529.2 eV, which indicated the electrons transfer from conduction band to oxygen vacancy level. Furthermore, electron paramagnetic resonance (EPR) showed strong signal at 2.002 which can be assigned to oxygen vacancies. Moreover, the superparamagnetic behavior was observed because of the presence of Ti³⁺ species. As a result, the EPR signal and super-paramagnetic behavior confirmed the existence of oxygen vacancies and Ti³⁺ species in self-doped TiO₂ hierarchical hollow spheres, respectively.

Yang et al. [53] analyzed the chemical states of core/shell TiO₂/C nanostructure with Pt loading to form Ti³⁺ species (Ti³⁺/TCP) by XPS spectrum. Two peaks at 458.7 (Ti 2p3/2) and 464.5 eV (Ti 2p1/2) were related to Ti⁴⁺, while two peaks were centered at 457.6 and 463.2 eV, corresponding to the Ti 2p1/2 and Ti 2p3/2 peaks of Ti³⁺ ions. For O 1s XPS spectra, the peak at 529.2 eV was assigned to Ti⁴⁺-O, and 530.2 eV were assigned to Ti³⁺-O or -OH. Amano et al. [30] calcined TiO₂ with hydrogen gas. Ti³⁺ and oxygen vacancies were characterized by electron spin resonance (ESR) spectra. It was demonstrated that at 500 °C

under H₂ treatment signal at g = 2.002 has indicated that there were electrons trapped in oxygen vacancies, and at signal g = 1.974 was related to Ti³⁺ species as shown in Figure 4(a). Liu et al. [31] synthesized the Ti³⁺ self-doped TiO₂ by temperature treatment with different type of gases including H₂/Ar or Ar under atmospheric pressure, and high H₂ pressure. The signals ($g_{xx} = 1.991$, $g_{yy} = 1.974$ $g_{zz} = 1.939$) of ESR at 4 K, indicated the formation of Ti³⁺ under high hydrogen pressure.

Figure 4: (A) ESR spectra of TiO₂ samples treated: (a) without H₂ treatment, (b) H₂ treatment at 300 °C, (c) H₂ treatment at 400 °C, (d) H₂ treatment at 500 °C, (e) H₂ treatment at 700 °C [30]. (B): Raman spectra of (a) Ti³⁺ self-doped blue TiO₂ with anatase-rutile mixture, (b) P25-TiO₂ [44].

Xin et al. [54] fabricated anatase self-doped TiO₂ nanocrystals by solvothermal method and followed by post-annealing at various temperatures. Raman spectroscopy was employed to investigate the defects in TiO₂. The peak of anatase 144.4 cm⁻¹ shifted to 152.6 cm⁻¹ and became more broader compared to P25-TiO2, which indicated the existence of Ti³⁺ with oxygen vacancies or the disorder in the crystal. The mixture of anatase and rutile for Ti³⁺ and oxygen vacancies defects formation on TiO₂ reported by [44]. The authors formed Ti³⁺ selfdoped blue TiO_2 with anatase-rutile mixture by solvothermal method. Raman spectrometry was used to characterize the forming of Ti³⁺ and oxygen vacancies. In comparison with P25-TiO₂, the Raman band at 142 cm⁻¹ shifted to 147 cm⁻¹ of Ti³⁺ self-doped blue TiO₂ with anatase-rutile mixture as is shown in Figure 4(b). The peak shifting of 5 cm⁻¹ and broadening ascribed to disorder in TiO₂ which occurred due to the localized Ti³⁺ associated with oxygen vacancies. Qiu et al. [55] used Raman spectrum to detect the presence of Ti^{3+} species in TiO_2 nanocrystal, where there were peaks at 146.2 cm⁻¹, 409.1 cm⁻¹, 516.6 cm⁻¹, and 640.1 cm⁻¹ due to anatase phase nature. The Eg mode at 144 cm⁻¹ and 639 cm⁻¹ were shifted to 146.2 cm⁻ ¹ and 640.1 cm⁻¹, respectively, which indicated the formation of Ti^{3+} ions in TiO_2 . Wu et al [24] investigated the formation of titanium interstitials and titanium vacancies on the ultrasmall yellow TiO₂ nanoparticles. The XPS peak at 456.9 eV which related to Ti³⁺ ions have

not found. Moreover, it was observed that the Fermi energy was 1.0 eV which is lower than Fermi level of oxygen vacancies, thus indicating that the defect was titanium interstitials. The XPS data and Fermi level confirmed the donor intrinsic defects was titanium interstitials and was not oxygen vacancies with Ti^{3+} defects. Besides, titanium vacancies were also found. From ESR spectra, the signal g = 1.998 was found due to the formation of titanium vacancies. Wang et al. [19] claimed that synthesized TiO_2 by solvothermal method formed titanium vacancies. There was no XPS peaks related to Ti^{3+} or Vo. Furthermore, from ESR analysis there was a new signal at g = 1.998 which is not related to Ti^{3+} , Vo, or O^{2-} and was presumably related to titanium vacancies.

4.2 Optical properties

The intrinsic defects affect the optical properties of TiO_2 . The absorption of sunlight is shifted to the visible or near red-infrared light region duo to the formation of intrinsic point defects energy level between the valence bands and conduction bands of TiO_2 as shown in Figure 5. The calculated energy level are 1.17 eV, 1.23 eV, and 1.15 eV for V_O, Ti_{int} and V_{Ti} , respectively [56].

Figure 5. Energy level of V₀, Ti_{int}, and V_{Ti} between VB and VB of TiO₂, calculated energy level from Ref[56].

Moreover, due to the formation of energy level of the intrinsic defects, the band gap of TiO_2 is narrowed. Table 2 shows a summary of the narrowed band gap that reported from previous literature. Qui et al. [55] synthesized Ti^{3+} self-doped TiO_2 nanocrystals by hydrothermal method based on Le Chatelier's principle. The study investigated the effect of Ti^{3+} and oxygen vacancies on band gap and visible light absorption of TiO_2 . The formation method of oxygen vacancies and Ti^{3+} was performed by controlling the ratio between $TiCl_3$ and $(NH_4)_2TiF_6$. It

was indicated that the defect of Ti^{3+} and oxygen vacancies prompted the absorption in visible light range 400-800 nm(Figure 6(a)) and the band gap was reduced to 2.68 eV as shown in Figure 6(b). The enhancement of absorption in visible region was due to the reduced band gap of TiO₂. Reducing the band gap was because of the new mid gap level below conduction band which produced by Ti^{3+} and oxygen vacancies defects.

Figure 6. (a) UV-visible diffuse reflectance spectra and (b) reduced band gap of TiO_2 nanocrystals prepared with (r = 1: 80) and without(r = 0) (NH₄)₂TiF₆. The inset in (a) shows color-change of the two TiO₂ sample[55].

Xin et al. [54] fabricated anatase TiO₂ nanocrystals with different concentration of Ti³⁺ species by solvothermal method and followed by post-annealing. All samples which were treated by post-annealing at different temperatures (300-700°C) showed higher absorption in the longer wavelengths comparison to TiO_{2-x} without post-annealing. TiO_{2-x} which was annealed at 500 °C has the narrowest band gap (2.63 eV) in comparison with the other samples. The narrowest band gap was ascribed to the abundance of Ti^{3+} in the bulk of TiO_2 . Xing et al. [38] used NaBH₄ as reduction agent for Ti³⁺-doped TiO₂, and consequently the absorption intensity increased. The Ti^{3+}/TiO_2 with the 0.13 g of NaBH₄ showed the highest absorption intensity and the band gap was 2.71 eV. Zhou et al. [18] investigated the optical properties of Ti³⁺ self-doped mesoporous black TiO₂/graphene assemblies and mesoporous black TiO₂/graphene assemblies. The existence of Ti³⁺ ions increased the visible light absorption in comparison with mesoporous black TiO₂/graphene assemblies which exhibited a slight absorption in visible light. Furthermore, the band gap of Ti³⁺ self-doped mesoporous black TiO₂/graphene assemblies was 2.7 eV, while the band gap of mesoporous black TiO₂/graphene assemblies was 3.2 eV. The wide absorption in visible light and narrowed band gap has improved the photocatalytic properties due to the synergistic effect of Ti³⁺, mesoporous TiO₂, and graphene.

Table 2. The band gap of defective TiO_2 with $Ti^{3\scriptscriptstyle +}$ and V_O

Started TiO ₂	Defect	Band gap (eV)	Reference
TiO ₂ nanocrystals	Ti ³⁺ , V ₀	2.68	[55]
TiO ₂ nanocrystals	Ti ³⁺	2.63	[54]
TiO ₂ nanoparticles	Ti ³⁺ , V ₀	2.71	[38]
mesoporous black TiO2/graphene assemblies	Ti ³⁺ , Vo	2.7	[18]
ultra-small yellow TiO2 nanoparticles	Ti _{int}	2.76	[24]

Liu et al. [32] fabricated Ti^{3+} self-doped TiO_{2-x} nanoparticles in anatase phase by oxidation of TiH₂ in H₂O₂, then the defective nanoparticles were calcined at different temperatures (300-600 °C) with various times (2-4 h). It was observed that all samples treated at different temperatures and times had absorbed the visible light in range between 400 and 800 nm decreased the band gap. It has been demonstrated that although the two samples of TiO_{2-x} which were treated at 500 °C for 3 h. and at 400 °C for 4 h showed strong visible light absorption, these samples has also shown weak UV absorption. The strong absorption in visible region ascribed to the untreated TiH₂. Among all samples, TiO_{2-x} at 500 °C for 4 h which had a better crystallinity and higher content of Ti^{3+} exhibited the strongest visible light absorption. Zhou et al. [44] prepared Ti^{3+} self-doped anatase-rutile TiO_2 nanoparticles by solvothermal method. During the sample's preparation, the volume ratios of TiCl₃ to titanium isopropoxide was controlled (0:4, 5:4, 10:4, 15:4, and 30:4). When the volume of TiCl₃ during synthetic reaction increased, the absorption in visible light increased and optical absorption band edge shifted to longer wavelengths. Furthermore, when the amount of TiCl₃ was increased, the band gaps of all samples were decreased. It was noted that the formation of Ti³⁺ defects and increased percentage of rutile phase were associated with decreases in the band gaps of the samples. Similar to Ti^{3+} and oxygen vacancies, titanium interstitials also reduce the band gap and enhance the visible light absorption. The ultra-small yellow TiO₂ nanoparticles with the titanium interstitials and titanium vacancies reduced the band gap to 2.76 eV which attributed to the titanium interstitials formation. The sample absorbed the light at 450 nm which was related to visible light absorption [24]. However, compared to the intrinsic donor defects, titanium vacancies which as intrinsic acceptor defect do not reduce the band gap of TiO₂. Bak et al. [50] synthesized the defective TiO₂ with titanium vacancies by prolong oxidation. The authors evaluated the effect of prolong oxidation on the band gap of TiO₂. It was observed that the wide band gap of TiO₂ was not reduced by prolonged oxidation which formed the titanium vacancies. That means there was no change in band gap before and after forming the titanium vacancies.

4.3 Transfer charge properties

In order to achieve an efficient photo-catalyst, the high separation efficiency of photoinduced electron-hole pairs and rapid charge transfer are required to enhance the chemical reaction and accordingly improve the photo-catalytic activity. Therefore, numerous studies have focus on the effect of intrinsic defects in TiO₂ on charge separation and transfer. Zhang et al. [57] synthesized different types of TiO_2 by hydrothermal; anatase TiO_2 sheet, Ti^{3+} self-doped rutile TiO₂, Ti³⁺ self-doped anatase-rutile TiO₂ sheet (fabricated with anatase TiO₂ sheet), and Ti³⁺ self-doped anatase-rutile TiO₂ (fabricated with Degussa P25TiO₂). The authors investigated the separation efficiency of the photogenerated electron-hole pairs by photoluminescence (PL) spectra. PL intensity of Ti³⁺ self-doped anatase-rutile TiO₂ was lower than Ti³⁺ selfdoped rutile TiO₂. The lower PL intensity indicated much higher charge separation than selfdoped rutile due to the transfer of photo-excited charge carriers between anatase and rutile TiO₂ under visible light irradiation. Furthermore, as compared with anatase TiO₂ and Ti³⁺ rutile TiO₂, self-doped anatase-rutile TiO₂ showed larger photocurrent. As a result, the PL intensity and photocurrent indicated self-doped anatase-rutile enhanced significantly the photogeneration charge carrier. Amano et al. [30] claimed that reduced TiO₂ with hydrogenation at various temperatures forming Ti³⁺ defects showed high donor density and low resistance, which attributed to the increase of n-type conductivity due to increasing the amount of conduction electrons. As the electrical conductivity enhanced, the charge carrier recombination reduced and accordingly improve the photocatalytic activity. Deng et al. [58] prepared Ti³⁺ self-doped TiO₂ nanorods/nanosheets by hydrothermal method and then treated with NaBH₄. The charge carrier transfer and photogenerated electron-hole pairs separation were tested by electrochemical impedance spectroscopy (EIS). The radius on the EIS Nyquist plot of Ti³⁺ self-doped TiO₂ nanorods/nanosheets was smaller than the radius of TiO₂ nanorods/nanosheets with or without light illumination, which attributed to enhancement of charge separation and transfer. Thus, the interface resistance became lower and the electrochemical reaction became more facilitated. Xin et al. [54] studied the electrochemical properties of Ti^{3+} self-doped TiO_2 nanocrystals (Ti^{3+}/TiO_2 NCs) in anatase phase by EIS. It was observed that the radius of arc in EIS Nyquist plot of Ti^{3+}/TiO_2 NCs was smaller than that samples without Ti³⁺ ions in dark and under light irradiation.

Moreover, various studies have investigated the effect of p-type TiO_2 on charge mobility. Table 3 shows the charge mobility of p-type TiO_2 which fabricated and investigated by

various studies. Wang e al. [19] conducted a study on the effect of p-typeTiO₂ with titanium vacancies on charge mobility and resistivity. The existence of titanium vacancies increased the charge mobility and decreased the resistivity. Hall Effect measurement was used to determine the type of electrical conductivity and the charge mobility. The Hall coefficient was positive (+134 cm³/C) for defective TiO₂ with titanium vacancy defects, which indicated the product was p-type and conducted via holes, while the non-defective TiO₂ with titanium vacancy defects exhibited negative Hall coefficient ($-33.3 \text{ cm}^3/\text{C}$). In addition, the charge mobility of p-type TiO₂ was 1.39×10^{-4} cm²/V·S), which was higher than the charge mobility of n-type TiO₂ ($0.223 \times 10^{-4} \text{ cm}^2/\text{V} \cdot \text{s}$). It was reported that the mobility of Mn-doped p-TiO₂ is lower than that of pure TiO_2 . Thus, unlike foreign p-type dopants, V_{Ti} has no deteriorating effect on the charge transfer. Furthermore, the Mott-Schottky plots showed negative slope which gave another evidence of p-type TiO₂ formation. From electrochemical impedance spectra (EIS), the radius in the Nyquist plot of p-type TiO₂ was smaller than the radius of ntype TiO₂, which indicated the titanium vacancies on TiO₂ enhanced the charge transfer between the TiO₂ and electrolyte interface. As a result, the charge carrier separation increased. Bak ea al. [50] formed titanium vacancies in TiO₂ by prolong oxidation with mixture of argon and oxygen gas. The effect of prolonged oxidation of TiO₂ on charge mobility was evaluated. The mobility of electrons increased to $0.8 \times 10^{-5} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ after 2470 h. Bhowmik et al. (2014) claimed that the charge carrier (hole) concentration and mobility of undoped p-type TiO₂ were 7.893×10^{15} cm⁻³ and 2.198×10^3 cm² V⁻¹ S⁻¹, respectively. The authers observed that the carrier (hole) mobilities of undoped p-type (with oxygen interstitials) were larger than 400 cm² V⁻¹ S⁻¹.

Table 3 C	harge mob	oility of p	-type TiO ₂
-----------	-----------	-------------	------------------------

Photocatalyst	Defect	Charge mobility	Reference
p-type TiO ₂	V _{Ti}	$1.39 \times 10^{-4} \text{ cm}^2/\text{V}\cdot\text{S}$	[19]
p-type TiO ₂	V_{Ti}	$0.8 \times 10^{-5} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$	[50]
p-type TiO ₂ thin film	Oint	2.198 10 ³ cm ² V ⁻¹ S ⁻¹	[51]
p-type TiO ₂ thin film	V _{Ti}	400 cm ² V ⁻¹ S ⁻¹	[43]

5. Photocatalytic hydrogen production

Hydrogen production by photocatalytic water splitting is measured by two methods: photochemical reaction and photo-electrochemical reaction. In photochemical reaction(Figure 6(a)), the powder or thin film photo-catalyst is put in solution to perform the water splitting

reaction. Mostly sacrificial agent is used for photochemical reaction to prevent the charge carrier recombination [57, 58, 59, 60]. Gas chromatograph with thermal conductive detector is used to estimate photocatalytic H_2 evolution rate. On the other hand, in the photoelectrochemical reaction as shown in Figure 6(b), the thin film photocatalyst acts as a working electrode. An external circuit is used to transfer the electrons from the anode to the cathode where hydrogen is generated. The photoelectrochemical water splitting is evaluated by measuring the photocurrent [57, 61].

Figure 7. Photocatalytic water-splitting reactions: (a) photo-chemical reaction [60]. (b) photo-electrochemical reaction [57]

In this section, the recent advances of defective TiO_2 with intrinsic point defects for photocatalytic hydrogen evolution and photoelectrochemical water splitting were discussed. Table 4 and Table 5 summarize the photocatalytic hydrogen evolution and photoelectrochemical water splitting of defective TiO_2 with intrinsic point defects, respectively.

5.1 Photocatalytic hydrogen evolution

It is essential to measure the photocatalytic activity of TiO₂ for hydrogen evolution in order to know if the modified TiO₂ by different strategies improved the photocatalytic hydrogen generation. Yang et al. [53] synthesized Ti³⁺/TCP nanorods by preparation of core/shell TiO₂/C nanostructure and then loaded of platinum (Pt) on the TiO₂/C surface. The hydrogen evolution was high (8117 μ mol h⁻¹ g⁻¹), which ascribed to the absorption of visible light. Furthermore, the carbon layers helped to promote the electrical conductivity which improve the separation and the transfer of photogenerated charge carrier. Most importantly, Ti³⁺/TCP obtained a good catalytic stability after a 40h cycle reaction. Ti³⁺/TiO₂ nanobelts was investigated for photocatalytic hydrogen generation. Ti³⁺/oxygen vacancies formed on TiO₂ nanobelts by using NaBH₄ as reduction agent. The defects hindered the charge carrier recombination. Furthermore, the defects enhanced the charge carrier trapping and the visible

light absorption. Thus, the H₂ evolution of reduced TiO₂ nanobelts (7.02 mmol $h^{-1}g^{-1}$) was higher than TiO₂ nanobelts (0.67 mmol $h^{-1}g^{-1}$)[40]. Yu et al. [64] synthesized Ti³⁺/TiO₂ mesocrystals which exhibited mesoporous structure. H₂ generation of Ti³⁺/TiO₂ mesocrystals $(301.1 \,\mu\text{mol}\,h^{-1}\text{g}^{-1})$ was higher than P25 TiO₂ (2.3 $\mu\text{mol}\,g^{-1}\,h^{-1})$. The enhanced photocatalytic activity attributed to the formation of Ti³⁺ and mesocrystal structure, resulting in enhancing the visible light absorption and electron-hole pair separation. Wang et al. [19] synthesized ptype-TiO₂ with titanium vacancies by solvothermal method. P-type TiO₂ exhibited H₂ evolution of 29.8 mmol $h^{-1}g^{-1}$, while the normal TiO₂ generated only 6.8 mmol $h^{-1}g^{-1}$. The existence of titanium vacancies increased the charge mobility and subsequently the photocatalytic activity increased. Pan et al. [20] investigated the effect of TiO₂ p-n homojunction on photocatalytic hydrogen generation. It exhibited the higher photoactivity for hydrogen evolution than p-type TiO₂ or n-type TiO₂. Hydrogen evolution rate of p-n TiO₂ was 50.3 mmol $h^{-1}g^{-1}$. Whereas the hydrogen evolution rate was recorded tobe 29.8 mmol $h^{-1}g^{-1}$ and 6.75 mmol $h^{-1}g^{-1}$ for p-type TiO₂ and n-type TiO₂, respectively. Wu et al. [24] synthesized TiO₂ with titanium vacancies and titanium interstitials by UV light pretreatment. Titanium vacancies (V_{Ti}) is as acceptor and titanium interstitials (Ti_{int}) is as donor. The acceptor-donor on TiO₂ enhanced the photocatalytic activity for H₂ generation. Hydrogen evolution was 48.4 μ mol h⁻¹g⁻¹ under solar simulator illumination. The photocatalysis was enhanced due to V_{Ti}-Ti_{int} defects act as active sites. Li et al. [65] created a black Ti^{3+/} TiO₂ by treated Ti foil in 1-methyl-imidazolium tetrafluoroborate ionic liquid containing acetic acid (HAc), and lithium acetate (LiAc) under ionothermal conditions. The photocatalytic activity for hydrogen production was 0.26 mmol h⁻¹m⁻², which was higher than TiO₂ P25 (0.13 mmol h⁻¹m⁻²). The abundance of Ti³⁺ ions in TiO₂ lattice and oxygen vacancies had promoted the absorption of visible light and photoelectron-hole separation. Zhao et al. [36] produced four types of TiO₂ nanorods: stoichiometric nanorods (TiO₂ NRs), nanorods with surface oxygen vacancies (S-TiO_{2-x}NRs), nanorods with bulk oxygen vacancies (B-TiO_{2-x}NRs), and nanorods with bulk and surface oxygen vacancies (S-B-TiO_{2-x} NRs). S-TiO_{2-x} was treated by NaBH₄ reduction, while B-TiO_{2-x} was treated by hydrothermal method. Then B-TiO_{2-x} was treated by surface reduction treatment with NaBH₄ to form S-B-TiO_{2-x} NRs. Under solar-light irradiation, the H₂ evolution rate of S-B-TiO_{2-x} NRs (106.98 µmol/h) was higher than B-TiO₂₋ x NRs (56.58 μ mol/h), S-TiO_{2-x} NRs (48.94 μ mol/h), and TiO₂ NPs (8.49 μ mol/h). All samples of TiO_2 NRs which contain oxygen vacancies showed higher photocatalytic activity

Hydrothermal method was used to synthesize rice-shaped Ti³⁺ self-doped TiO_{2-x} nanoparticles by oxidation of TiH₂ in H₂O₂. The obtained photocatalyst exhibited higher H₂ evolution rate in comparison to P25 TiO₂ due to the formation of oxygen vacancies and Ti³⁺ ions [66]. Zhou et al. [18] formed Ti³⁺ self-doped mesoporous black TiO₂/graphene assemblies by solvothermal method and then the product was treated by surface hydrogenation. The structural properties of the photocatalyst effect the photocatalytic activity. The twodimensional graphene structure and TiO₂ mesoporous architecture improved the charge carrier separation and the visible light absorption. Thus, hydrogen evolution rate of Ti³⁺ selfdoped mesoporous black TiO₂/graphene assemblies (186 µmol h⁻¹ 0.01 g⁻¹) was higher than mesoporous black TiO₂/graphene assemblies (~ 50 µmol h⁻¹ 0.01 g⁻¹) and mesoporous black TiO₂ (~ 96 µmol h⁻¹ 0.01 g⁻¹).

Started TiO ₂	Defect	Reactant solution	Light source	H ₂ evolution	Reference
TiO ₂ nanobelts	Ti ³⁺ , V ₀	1 wt% Pt & 100 mL 20 vol% methanol aqueous solution	350 W Xe arc lamp (350–750 nm)	7.02 mmol h ⁻¹	[40]
Anatase TiO ₂	V _{Ti}	1.0 wt. % Pt &120 mL 30 vol% methanol aqueous solution	300 W high-pressure Xenon lamp	29.86 mmol h ⁻¹	[19]
Anatase TiO ₂	V_{Ti} , $V_{O_i} Ti^3$	1.0 wt. % Pt &120 mL 30 vol% methanol aqueous solution	300 W high-pressure Xenon lamp	50.3 mmol h ⁻¹	[20]
TiO ₂ nanoparticles	V _{Ti} , Ti _{int}	100 ml 3.7 vol% formaldehyde aqueous solution	solar simulator illumination	0.0484 mmol h-1	[24]
black single-crystal TiO ₂	Ti ³⁺ , V ₀	1 wt% Pt & 100 mL aqueous solution with 20 mL methanol	300 W Xenon lamp	0.26 mmol h ⁻¹ m ⁻²	[65]
TiO ₂ nanorods	Ti ³⁺ , Vo	1 wt.% Pt & 120 mL 30 vol.% methanol aqueous solution	300 W Xe lamp	106.98 µmol/h	[36]
TiO ₂ nanotube arrays	Ti ³⁺ , V ₀	methanol/water (50/50 vol %)	AM1.5 (100mW/cm ²)	7 μmol h ⁻¹ cm ⁻²	[31]
TiO _{2-x} anatase nanoparticles	Ti ³⁺ , Vo	0.4 wt% Pt & 150 mL 10%, V/V methanol and hexachloroplatinic acid	300 W Xe lamp	19.9 μmol/h/0.1 g	[32]
Black TiO ₂	Ti ³⁺ , V ₀	1 wt% Pt & 20 vol% methanol aqueous solution	visible light	440 μmol h-1 g-1	[67]
TiO ₂ nanocrystals	Ti ³⁺	1 wt% & 2 mL 50 vol% formic acid aqueous solution	visible light (> 420 nm, 200 mW cm ⁻²)	52 μmol h ⁻¹ g ⁻¹	[68]
mesoporous black TiO ₂	Ti ³⁺	1 wt.% Pt & 80 mL of water and 20 mL of methanol	solar simulator (equipped with AM 1.5G filter), power density of 100 mW/cm ²	136.2 μmol h ⁻¹	[69]
mesoporous black TiO ₂ /graphene assemblies	Ti ³⁺ , V ₀	0.5 wt% & 80 mL of water and 20 mL of methanol	300 W xenon lamp (equipped with optical cut-off filters)	186 μmol h ⁻¹ 0.01g ⁻¹	[18]
TiO ₂	Ti ³⁺ , Vo	1% Pt & 120 mL 25% methanol aqueous solution	300WXe lamp (equipped with 400nm cut-on filter)	14.8 mmol/h/0.3 g	[48]

Table 4. Photocatalytic hydrogen evolution of defective TiO₂ with intrinsic point defects

5.2 Photoelectrochemical water splitting

As the optical and charge transfer properties of modified TiO₂ improved, the photoelectrochemical properties was accordingly improved comparison to unmodified TiO₂. There are several studies evaluated the photoelectrochemical properties of modified TiO₂ by different strategies [68, 69, [70, 71, 56, 72, 73, 74, 75, 76, 24, 77, 17, 78]. Deng et al. [58] fabricated Ti³⁺ self-doped TiO₂ nanorods/nanosheets photoelectrode by hydrothermal reaction with sodium borohydride reduction. The photocurrent density of Ti³⁺ self-doped TiO_2 nanorods/nanosheets photoelectrode (0.022 mA cm⁻²) was higher than TiO_2 nanorods/nanosheets (0.006 mA cm⁻²). Ti³⁺ and oxygen vacancies enhanced the charge carrier separation and the photocatalytic activity. Huo et al. [74] synthesized Ti^{3+} self-doped TiO_2 particles by in situ surface hydrogenation synthetic strategy. The photocurrent density of Ti³⁺/TiO₂ (1090 nA cm⁻²) was higher than TiO₂ (428 nA cm⁻²). The photoelectrochemical properties of Ti³⁺/TiO₂ improved due to the absorption of visible light. Furthermore, it has found that after switching off the light, the Ti^{3+}/TiO_2 continued to generate current which means Ti³⁺ extended the lifetimes of charge carrier. Furthermore, Ti³⁺ self-doped TiO₂ nanotubes which were fabricated by electrochemical reduction evaluated for photoelectrochemical activity. The photocurrent of Ti³⁺ self-doped TiO₂ nanotubes was 0.525 mA cm⁻², whereas the photocurrent of pristine TiO₂ nanotubes was 0.170 mA cm⁻². The PEC performance of Ti³⁺ self-doped TiO₂ nanotubes were improved because the absorbed light was in the visible light region and the charge transfer was accelerated at the TiO₂ and electrolyte interface. Moreover, Ti³⁺ and oxygen vacancies defects increased the charge density and improved the electrical conductivity [75]. fabricated Ti³⁺ self-doped TiO₂ by solgel method and using aluminum acetylacetonate as catalyst to form Ti³⁺ions. The enhancement of photo-electrochemical activity correlated to Ti³⁺ existence. Li et al. created Ti³⁺ self-doped TiO₂ nanotube arrays by microwave-assisted chemical reduction method with sodium borohydride. The photocurrent density and photoconversion efficiency under AM1.5 of Ti³⁺ self-doped TiO₂ nanotube arrays was 3.05 mA cm⁻² and 1.66% respectively, which was 8 times higher than pristine TiO_2 nanotube arrays. The abundance of Ti^{3+} ion into the bulk of TiO₂ nanotube arrays exhibited stable and enhanced PEC performance as well as efficient absorption of visible light and fast charge carrier separation. One-dimensional Ti^{3+/} TiO₂ crystals were synthesized by hydrothermal reaction and Ti foil was used as a substrate [78]. The concentration of Ti^{3+} was controlled by N₂H₄ reduction. It was observed that the

high level of Ti^{3+} species improved the photoelectrochemical activity, leading to high photocurrent density of 0.64 mAcm⁻².

 Ti^{3+} self-doped TiO₂ nanoparticles were created by hydrothermal method. Under visiblelight irradiation, the obtained photocurrent density of Ti^{3+} self-doped TiO_2 was higher than the photocurrent of pure TiO₂. The existence of Ti³⁺ and oxygen vacancies improved the electrons and holes separation and transportation [24]. Yang et al. [79] synthesized Ti³⁺ self-TiO₂ nanotube arrays by the electrochemical reduction method. The transient photocurrent density of Ti^{3+} self-dope TiO_2 nanotube arrays was 3.3 μ A cm⁻², while the photocurrent of TiO₂ nanotube arrays was 1 μ A cm⁻². The doping of Ti³⁺ formed shallow donor level separated the photogenerated electron-hole pairs and increased the charge carrier density. As a result, the electrical conductivity has improved the charge transfer at semiconductorelectrolyte interface. Furthermore, the light absorption was enhanced by the hierarchical nanotube arrays. Ti³⁺ self-doped blue TiO₂ single-crystalline nanorods are fabricated by solgelation with hydrothermal methods and then reduced by NaBH₄. The rod-shape singlecrystalline structure and Ti^{3+} with oxygen vacancy formation has promoted the charge generation, separation and transfer, leading to higher photocurrent density of 56 µA cm⁻², which was 28-fold higher than that of TiO₂ nanoparticles (2 μ A cm⁻²)[17]. Zhang et al. [80] prepared Ti³⁺ self-doped black TiO₂ nanotubes with mesoporous nanosheet architecture by solvothermal method, and then the product was treated by ethylenediamine encircling strategy. The photocurrent of defected TiO₂ was 92.4, while the photocurrent of non-defected TiO₂ was 51.7 μ A cm⁻². The enhancement of photoelectrochemical properties attributed to utilization of wide range of sunlight due to the reduced bandgap. Furthermore, the Ti³⁺ formation improved the photogenerated charge carrier, and exhibited more surface-active sites.

Started TiO ₂	Defect	Electrolyte	Light source	Photo-current	Reference
TiO ₂ nanorods/nanosheets	Ti ³⁺ , Vo	0.1 mol L ⁻¹	35 W Xenon lamp irradiation	0.022 mA cm ⁻	[80]
		Na ₂ SO ₄		2	
TiO ₂ nanoparticles	Ti ³⁺	0.5 mol L ⁻¹	300 W Xe lamp	1090 nA cm ⁻²	[74]
		Na ₂ SO ₄			
TiO ₂ nanotubes	Ti ³⁺ , Vo	1 M KOH	300 W xenon arc lamp (equipped with AM 1.5	0.525 mA cm ⁻	[75]
			G filter)	2	
TiO ₂ nanoparticles	Ti ³⁺ , Vo	0.5 M Na ₂ SO ₄	simulated solar irradiation, 84.0 mW/cm2	-	[76]
TiO ₂ nanotube arrays	Ti ³⁺ , V ₀	1 M KOH	simulated solar light (AM1.5, 100 mW cm_2)	3.05 mA cm ⁻²	[77]
One-dimensional TiO ₂	Ti ³⁺	1M KOH	150 W xenon lamp (equipped with AM 1.5G	0.64 mA cm ⁻²	[78]
crystals			filter)		
TiO ₂ nanotube arrays	Ti ³⁺ , V ₀	1 M KOH	stimulated sunlight (AM 1.5, 100 mW cm-2)	$3.3 \mu A \mathrm{cm}^{-2}$	[79]

Table 5. photoelectrochemical water splitting of defective TiO_2 with intrinsic point defects

Note: Accepted manuscripts are articles that have been peer-reviewed and accepted for publication by the Editorial Board. These articles have not yet been copyedited and/or formatted in the journal house style.

blue TiO ₂ (B) single- crystalline nanorods	Ti ³⁺ , Vo	1M KOH	simulated sunlight AM 1.5	56 μA cm ⁻²	[17]
Black TiO ₂ Nanotubes with mesoporous nanosheet architecture	Ti ³⁺ , V ₀	1 М КОН	AM 1.5 light from a 300 W Xe lamp	92.4 μA cm ⁻²	[80]
TiO ₂ nanotube arrays	Ti ³⁺	1 M KOH	300 W Xe lamp	2.8 mA cm ⁻²	[70]
TiO ₂ nanotubes	Ti ³⁺ , V ₀	1M KOH	He–Ne laser (632nm)	16.85 mA cm ⁻ 2	[71]
TiO ₂ Nanowire Arrays	Vo	1 M NaOH	150Wxenon lamp (coupled with an AM 1.5G filter)	1.97 mA cm ⁻²	[72]
Black TiO ₂ nanotube arrays	Ti ³⁺ , V ₀	1 M NaOH	100 mW cm2 illumination	3.65 mA cm ⁻²	[73]
TiO ₂ p-n homojunction	Ti ³⁺ , Vo, V _{Ti}	0.2 M Na ₂ SO ₄	xenon lamp (equipped with an AM 1.5G filter)	-1.8 mA cm ⁻²	[20]

6. Summary and perspective

The intrinsic point defects in TiO₂ have been developed for solar hydrogen production via solar water splitting. Oxygen vacancy (V_0) and titanium interstitial (T_{int}) defects act as intrinsic donor defects, whereas titanium vacancy (V_{Ti}) and oxygen interstitial (O_{int}) defects act as intrinsic acceptor defects. Various preparation methods such as hydrogenation, reduction, oxidation, solvothermal, and atomic layer deposition (ALD) are utilized to form either intrinsic donor defects or intrinsic acceptor defects. Furthermore, in-situ decoration and UV light assisted sol-gel methods could be used to form the intrinsic donor and acceptor defects simultaneously. Depending on the type of synthetic methods and its preparation parameters for formation of intrinsic defects in TiO₂, the structural, optical, charge transfer properties of TiO₂ are modified. The defects such as Ti^{3+} and V₀ could enhance the visible light absorption of solar spectrum due to the narrowing of band gap or formation of midgap states. In addition, the defects improve the photoinduced electron-hole pair separation and significantly promote the charge carrier transfer. Thus, the modified properties enhance the photocatalytic activity for hydrogen production. However, the effect of intrinsic defects on photocatalytic properties for hydrogen production is still far from the satisfactory level. The formation of titanium interstitial (T_{iint}), titanium vacancy (V_{Ti}) or oxygen interstitial (O_{int}), or oxygen vacancies defects in TiO₂ is rarely studied. For future work, the effect of parameters of preparation methods on formation of intrinsic point defects on TiO_2 are needed to be evaluated. The shifting of light absorption from UV to visible region, by narrowing the band gap of TiO₂, should be improved by formation of intrinsic donor defects on TiO₂. The adsorption of water molecules on TiO₂ surface for better water splitting to produce more hydrogen should be improved by intrinsic acceptor defects. Moreover, the effect of intrinsic donor and acceptors defects simultaneously on TiO₂ performance for photocatalytic hydrogen generation should be considered. Since TiO_2 is a promising photocatalyst, intrinsic defects

would attract more attention for the improvement of TiO₂ performance for photocatalytic

hydrogen production.

References

- [1] G. Peharz, F. Dimroth, U. Wittstadt, Solar hydrogen production by water splitting with a conversion efficiency of 18%, Int. J. Hydrogen Energy. 32 (2007) 3248–3252. doi:10.1016/J.IJHYDENE.2007.04.036.
- [2] B. Wang, S. Shen, S.S. Mao, Black TiO_2 for solar hydrogen conversion, J. Mater. 3 (2017) 96–111. doi:10.1016/J.JMAT.2017.02.001.
- [3] S.T. Kochuveedu, Photocatalytic and Photoelectrochemical Water Splitting on TiO₂ via Photosensitization, J. Nanomater. 2016 (2016) 1–12. doi:10.1155/2016/4073142.
- [4] W. Shangguan, Hydrogen evolution from water splitting on nanocomposite photocatalysts, Sci. Technol. Adv. Mater. 8 (2007) 76–81. doi:10.1016/j.stam.2006.09.007.
- [5] N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renew. Sustain. Energy Rev. 15 (2011) 1513–1524. doi:10.1016/J.RSER.2010.11.037.
- [6] T.K. Kim, M.N. Lee, S.H. Lee, Y.C. Park, C.K. Jung, J.-H. Boo, Development of surface coating technology of TiO₂ powder and improvement of photocatalytic activity by surface modification, Thin Solid Films. 475 (2005) 171–177. doi:10.1016/J.TSF.2004.07.021.
- [7] L.Y. Ginting, M.K. Agusta, Nugraha, Ahmad H. Lubis, H.K. Dipojono, Cr , Fe Doped Anatase TiO₂ Photocatalyst : DFT + U Investigation on Band Gap, Adv. Mater. Res. 893 (2014) 31–34. doi:10.4028/www.scientific.net/AMR.893.31.
- [8] R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Improved visible light photocatalytic activity of TiO₂ codoped with Vanadium and Nitrogen, "Applied Catal. B, Environ. 126 (2012) 47–54. doi:10.1016/j.apcatb.2012.06.030.
- [9] F. Dong, S. Guo, H. Wang, X. Li, Z. Wu, Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO₂ Nanomaterials Prepared by a Green Synthetic Approach, J. Phys. Chem. C. 115 (2011) 13285–13292. doi:10.1021/jp111916q.
- [10] R. Jaiswal, J. Bharambe, N. Patel, A. Dashora, D.C. Kothari, A. Miotello, Copper and Nitrogen co-doped TiO₂ photocatalyst with enhanced optical absorption and catalytic activity, "Applied Catal. B, Environ. 168 (2015) 333–341. doi:10.1016/j.apcatb.2014.12.053.
- [11] E. Albiter, M.A. Valenzuela, S. Alfaro, G. Valverde-Aguilar, F.M. Martínez-Pallares, Photocatalytic deposition of Ag nanoparticles on TiO₂: Metal precursor effect on the structural and photoactivity properties, J. Saudi Chem. Soc. 19 (2015) 563–573. doi:10.1016/J.JSCS.2015.05.009.
- [12] V. Jovic, W.-T. Chen, D. Sun-Waterhouse, M.G. Blackford, H. Idriss, G.I.N. Waterhouse, Effect of gold loading and TiO₂ support composition on the activity of Au/ TiO₂ photocatalysts for H₂ production from ethanol–water mixtures, J. Catal. 305 (2013) 307–317. doi:10.1016/j.jcat.2013.05.031.
- [13] S. Escobedo, B. Serrano, A. Calzada, J. Moreira, H. de Lasa, Hydrogen production using a platinum modified TiO₂ photocatalyst and an organic scavenger. Kinetic modeling, Fuel. 181 (2016) 438–449. doi:10.1016/J.FUEL.2016.04.081.
- [14] M.C. Wu, I.C. Chang, W.K. Huang, Y.C. Tu, C.P. Hsu, W.F. Su, Correlation between palladium chemical state and photocatalytic performance of TiO₂-Pd based nanoparticles, Thin Solid Films. 570 (2014) 371– 375. doi:10.1016/j.tsf.2014.04.026.
- [15] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances, Chem. Soc. Rev. 43 (2014) 5234– 5244. doi:10.1039/c4cs00126e.
- [16] R. Candal, A.M. la Cruz, New Visible-Light Active Semiconductors, in: Photocatalytic Semicond., Springer International Publishing, Cham, 2015: pp. 41–67. doi:10.1007/978-3-319-10999-2_2.
- [17] Y. Zhang, Z. Xing, X. Liu, Z. Li, X. Wu, J. Jiang, M. Li, Q. Zhu, W. Zhou, Ti³⁺ Self-Doped Blue TiO₂ (B) Single-Crystalline Nanorods for Efficient Solar-Driven Photocatalytic Performance, ACS Appl. Mater.

Interfaces. 8 (2016) 26851-26859. doi:10.1021/acsami.6b09061.

- [18] G. Zhou, L. Shen, Z. Xing, X. Kou, S. Duan, L. Fan, H. Meng, Q. Xu, X. Zhang, L. Li, M. Zhao, J. Mi, Z. Li, Ti³⁺self-doped mesoporous black TiO₂/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution, J. Colloid Interface Sci. 505 (2017) 1031–1038. doi:10.1016/j.jcis.2017.06.097.
- [19] S. Wang, L. Pan, J.-J. Song, W. Mi, J.-J. Zou, L. Wang, X. Zhang, Titanium-Defected Undoped Anatase TiO₂ with p-Type Conductivity, Room-Temperature Ferromagnetism, and Remarkable Photocatalytic Performance, J. Am. Chem. Soc. 137 (2015) 2975–2983. doi:10.1021/ja512047k.
- [20] L. Pan, S. Wang, J. Xie, L. Wang, X. Zhang, J.-J. Zou, Constructing TiO₂ p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation, Nano Energy. 28 (2016) 296–303. doi:10.1016/J.NANOEN.2016.08.054.
- [21] K.M. Pangan-Okimoto, P. Gorai, A.G. Hollister, E.G. Seebauer, Model for Oxygen Interstitial Injection from the Rutile TiO₂ (110) Surface into the Bulk, J. Phys. Chem. C. 119 (2015) 9955–9965. doi:10.1021/acs.jpcc.5b02009.
- [22] T. Bak, J. Nowotny, M.K. Nowotny, Defect Disorder of Titanium Dioxide, J. Phys. Chem. B. 110 (2006) 21560–21567.
- [23] J. Nowotny, M.A. Alim, T. Bak, M.A. Idris, M. Ionescu, K. Prince, M.Z. Sahdan, K. Sopian, M.A.M. Teridi, W. Sigmund, Defect chemistry and defect engineering of TiO₂-based semiconductors for solar energy conversion, Chem. Soc. Rev. 44 (2015) 8424–8442. doi:10.1039/C4CS00469H.
- [24] Q. Wu, F. Huang, M. Zhao, J. Xu, J. Zhou, Y. Wang, Ultra-small yellow defective TiO₂ nanoparticles for co-catalyst free photocatalytic hydrogen production, Nano Energy. 24 (2016) 63–71. doi:10.1016/j.nanoen.2016.04.004.
- [25] L.R. Sheppard, T. Bak, J. Nowotny, Electrical Properties of Niobium-Doped Titanium Dioxide. 2. Equilibration Kinetics, J. Phys. Chem. B. 110 (2006) 22455–22461.
- [26] M.K. Nowotny, L.R. Sheppard, T. Bak, J. Nowotny, Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO₂-based photocatalysts, J. Phys. Chem. C. 112 (2008) 5275–5300. doi:10.1021/jp077275m.
- [27] J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, TiO₂ Surface Active Sites for Water Splitting, J. Phys. Chem. B. 110 (2006) 18492–18495.
- [28] D.C. Cronemeyer, Infrared absorption of reduced rutile TiO₂ single crystals, Phys. Rev. 113 (1959).
- [29] J. Nowotny, A.J. Atanacio, T. Bak, I. V. Belova, S. Fiechter, Y. Ikuma, M. Ionescu, B.J. Kennedy, P. Majewski, G.E. Murch, E.D. Wachsman, Photosensitive oxide semiconductors for solar hydrogen fuel and water disinfection, Int. Mater. Rev. 59 (2014) 449–478. doi:10.1179/1743280414Y.0000000039.
- [30] F. Amano, M. Nakata, A. Yamamoto, T. Tanaka, Effect of Ti³⁺ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation, J. Phys. Chem. C. 120 (2016) 6467–6474. doi:10.1021/acs.jpcc.6b01481.
- [31] N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Müller, E. Spiecker, P. Schmuki, Black TiO₂ Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation, Nano Lett. 14 (2014) 3309–3313.
- [32] X. Liu, H. Xu, L.R. Grabstanowicz, S. Gao, Z. Lou, W. Wang, B. huang, Y. Dai, T. Xu, Ti³⁺ self-doped TiO_{2-x} anatase nanoparticles via oxidation of TiH₂ in H₂O₂, Catal. Today. 225 (2014) 80–89. doi:10.1016/J.CATTOD.2013.08.025.
- [33] L.R. Grabstanowicz, S. Gao, T. Li, R.M. Rickard, T. Rajh, D.-J. Liu, T. Xu, Facile Oxidative Conversion of TiH₂ to High-Concentration Ti³⁺ -Self-Doped Rutile TiO₂ with Visible-Light Photoactivity, Inorg. Chem. 52 (2013) 3884–3890. doi:10.1021/ic3026182.
- [34] S. Wei, S. Ni, X. Xu, A new approach to inducing Ti³⁺ in anatase TiO₂ for efficient photocatalytic hydrogen production, Chinese J. Catal. 39 (2018) 510–516. doi:10.1016/S1872-2067(17)62968-1.
- [35] H. Tan, Z. Zhao, M. Niu, C. Mao, D. Cao, D. Cheng, P. Feng, Z. Sun, A facile and versatile method for preparation of colored TiO₂ with enhanced solar-driven photocatalytic activity, Nanoscale. 6 (2014) 10216–10223. doi:10.1039/C4NR02677B.
- [36] Z. Zhao, X. Zhang, G. Zhang, Z. Liu, D. Qu, X. Miao, P. Feng, Z. Sun, Effect of defects on photocatalytic activity of rutile TiO₂ nanorods, Nano Res. 8 (2015) 4061–4071. doi:10.1007/s12274-015-0917-5.

- [37] W. Fang, M. Xing, J. Zhang, A new approach to prepare Ti³⁺ self-doped TiO₂ via NaBH₄ reduction and hydrochloric acid treatment, Appl. Catal. B Environ. 161 (2014) 240–246. doi:10.1016/j.apcatb.2014.05.031.
- [38] M. Xing, W. Fang, M. Nasir, Y. Ma, J. Zhang, M. Anpo, Self-doped Ti³⁺-enhanced TiO₂ nanoparticles with a high-performance photocatalysis, J. Catal. 297 (2013) 236–243. doi:10.1016/J.JCAT.2012.10.014.
- [39] R. Ren, Z. Wen, S. Cui, Y. Hou, X. Guo, J. Chen, Controllable Synthesis and Tunable Photocatalytic Properties of Ti³⁺-doped TiO₂, Sci. Rep. 5 (2015) 10714. doi:10.1038/srep10714.
- [40] J. Tian, X. Hu, H. Yang, Y. Zhou, H. Cui, H. Liu, High yield production of reduced TiO₂ with enhanced photocatalytic activity, Appl. Surf. Sci. 360 (2016) 738–743. doi:10.1016/J.APSUSC.2015.11.056.
- [41] Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, Reduced TiO₂ nanotube arrays for photoelectrochemical water splitting, J. Mater. Chem. A. 1 (2013) 5766. doi:10.1039/c3ta10689f.
- [42] D. Ariyanti, L. Mills, J. Dong, Y. Yao, W. Gao, NaBH₄ modified TiO₂: Defect site enhancement related to its photocatalytic activity, Mater. Chem. Phys. 199 (2017) 571–576. doi:10.1016/J.MATCHEMPHYS.2017.07.054.
- [43] A.T. Iancu, M. Logar, J. Park, F.B. Prinz, Atomic Layer Deposition of Undoped TiO₂ Exhibiting p-Type Conductivity, ACS Appl. Mater. Interfaces. 7 (2015) 5134–5140. doi:10.1021/am5072223.
- [44] Y. Zhou, C. Chen, N. Wang, Y. Li, H. Ding, Stable Ti³⁺ Self-Doped Anatase-Rutile Mixed TiO₂ with Enhanced Visible Light Utilization and Durability, J. Phys. Chem. C. 120 (2016) 6116–6124. doi:10.1021/acs.jpcc.6b00655.
- [45] R. Sasikala, V. Sudarsan, C. Sudakar, R. Naik, L. Panicker, S.R. Bharadwaj, Modification of the photocatalytic properties of self doped TiO₂ nanoparticles for hydrogen generation using sunlight type radiation, Int. J. Hydrogen Energy. 34 (2009) 6105–6113. doi:10.1016/J.IJHYDENE.2009.05.131.
- [46] W.H. Saputera, G. Mul, M.S. Hamdy, Ti³⁺-containing titania: Synthesis tactics and photocatalytic performance, Catal. Today. 246 (2015) 60–66. doi:10.1016/J.CATTOD.2014.07.049.
- [47] B. Liu, K. Cheng, S. Nie, X. Zhao, H. Yu, J. Yu, A. Fujishima, K. Nakata, Ice–Water Quenching Induced Ti³⁺ Self-doped TiO₂ with Surface Lattice Distortion and the Increased Photocatalytic Activity, J. Phys. Chem. C. 121 (2017) 19836–19848. doi:10.1021/acs.jpcc.7b06274.
- [48] F. Zuo, L. Wang, P. Feng, Self-doped Ti³⁺@ TiO₂ visible light photocatalyst: Influence of synthetic parameters on the H2 production activity, Int. J. Hydrogen Energy. 39 (2014) 711–717. doi:10.1016/J.IJHYDENE.2013.10.120.
- [49] M.K. Nowotny, T. Bak, J. Nowotny, C.C. Sorrell, Titanium vacancies in nonstoichiometric TiO₂ single crystal, Phys. Status Solidi. 242 (2005) 88–90. doi:10.1002/pssb.200541186.
- [50] T. Bak, M.K. Nowotny, L.R. Sheppard, J. Nowotny, Effect of Prolonged Oxidation on Semiconducting Properties of Titanium Dioxide, J. Phys. Chem. C. 112 (2008) 13248–13257. doi:10.1021/jp803020d.
- [51] B. Bhowmik, K. Dutta, A. Hazra, P. Bhattacharyya, Low temperature acetone detection by p-type nanotitania thin film: Equivalent circuit model and sensing mechanism, Solid. State. Electron. 99 (2014) 84– 92. doi:10.1016/J.SSE.2014.04.023.
- [52] Hy. Yin, Xl. Wang, L. Wang, Ql. N, Ht. Zhao, Self-doped TiO₂ hierarchical hollow spheres with enhanced visible-light photocatalytic activity, J. Alloys Compd. 640 (2015) 68–74. doi:10.1016/J.JALLCOM.2015.03.216.
- [53] Y. Yang, P. Gao, X. Ren, L. Sha, P. Yang, J. Zhang, Y. Chen, L. Yang, Massive Ti³⁺ self-doped by the injected electrons from external Pt and the efficient photocatalytic hydrogen production under visible-Light, Appl. Catal. B Environ. 218 (2017) 751–757. doi:10.1016/J.APCATB.2017.07.014.
- [54] X. Xin, T. Xu, J. Yin, L. Wang, C. Wang, Management on the location and concentration of Ti³⁺ in anatase TiO₂ for defects-induced visible-light photocatalysis, Appl. Catal. B Environ. 176 (2015) 354–362. doi:10.1016/J.APCATB.2015.04.016.
- [55] M. Qiu, Y. Tian, Z. Chen, Z. Yang, W. Li, K. Wang, L. Wang, K. Wang, W. Zhang, Synthesis of Ti³⁺ selfdoped TiO₂ nanocrystals based on Le Chatelier's principle and their application in solar light photocatalysis, RSC Adv. 6 (2016) 74376–74383. doi:10.1039/C6RA12674J.
- [56] F.M. Hossain, G.E. Murch, L. Sheppard, J. Nowotny, The Effect of Defect Disorder on the Electronic Structure of Rutile TiO_{2-x}, Defect Diffus. Forum. 252 (2006) 1–12.

- [57] X. Zhang, G. Zuo, X. Lu, C. Tang, S. Cao, M. Yu, Anatase TiO2 sheet-assisted synthesis of Ti³⁺ self-doped mixed phase TiO₂ sheet with superior visible-light photocatalytic performance: Roles of anatase TiO₂ sheet, J. Colloid Interface Sci. 490 (2017) 774–782. doi:10.1016/j.jcis.2016.12.010.
- [58] X. Deng, H. Zhang, R. Guo, Q. Ma, Y. Cui, X. Cheng, M. Xie, Q. Cheng, Effect of Ti³⁺ on enhancing photocatalytic and photoelectrochemical properties of TiO₂ nanorods/nanosheets photoelectrode, Sep. Purif. Technol. 192 (2018) 329–339. doi:10.1016/j.seppur.2017.10.029.
- [59] C.-H. Liao, C.-W. Huang, J.C.S. Wu, Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting, Catalysts. 2 (2012) 490–516. doi:10.3390/catal2040490.
- [60] W.-T. Chen, A. Chan, Z.H.N. Al-Azri, A.G. Dosado, M.A. Nadeem, D. Sun-Waterhouse, H. Idriss, G.I.N. Waterhouse, Effect of TiO₂ polymorph and alcohol sacrificial agent on the activity of Au/ TiO₂ photocatalysts for H₂ production in alcohol–water mixtures, J. Catal. 329 (2015) 499–513. doi:10.1016/J.JCAT.2015.06.014.
- [61] I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO₂ Nanorods for Photoelectrochemical Hydrogen Production, Nano Lett. 11 (2011) 4978–4984. doi:10.1021/nl2029392.
- [62] S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting, Nat. Rev. Mater. 2 (2017) 17050. doi:10.1038/natrevmats.2017.50.
- [63] K. Atacan, N. Güy, S. Çakar, Preparation and antibacterial activity of solvothermal synthesized ZnFe₂O₄/Ag- TiO₂ nanocomposite, Sak. Univ. J. Sci. 22 (2018) 1720–1726. doi:10.16984/saufenbilder.373607.
- [64] X. Yu, X. Fan, L. An, Z. Li, J. Liu, Facile synthesis of Ti³⁺- TiO₂ mesocrystals for efficient visible-light photocatalysis, J. Phys. Chem. Solids. 119 (2018) 94–99. doi:10.1016/J.JPCS.2018.03.024.
- [65] G. Li, Z. Lian, X. Liu, Y. Xu, W. Wang, D. Zhang, F. Tian, Ionothermal synthesis of black Ti³⁺-doped single-crystal TiO₂ as an active photocatalyst for pollutant degradation and H2 generation, J. Mater. Chem. A. 3 (2015) 3748–3756. doi:10.1039/C4TA02873B.
- [66] X. Liu, S. Gao, H. Xu, Z. Lou, W. Wang, B. Huang, Y. Dai, Green synthetic approach for Ti³⁺ self-doped TiO_{2-x} nanoparticles with efficient visible light photocatalytic activity, Nanoscale. 5 (2013) 1870–1875. doi:10.1039/c2nr33563h.
- [67] A. Sinhamahapatra, J. Jeon, J. Yu, A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production, Energy Environ. Sci. 8 (2015) 3539–3544. doi:10.1039/C5EE02443A.
- [68] P. Zhang, T. Tachikawa, M. Fujitsuka, T. Majima, Atomic Layer Deposition-Confined Nonstoichiometric TiO₂ Nanocrystals with Tunneling Effects for Solar Driven Hydrogen Evolution, J. Phys. Chem. Lett. 7 (2016) 1173–1179. doi:10.1021/acs.jpclett.6b00227.
- [69] W. Zhou, W. Li, J.Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, Ordered mesoporous black TiO₂ as highly efficient hydrogen evolution photocatalyst, J. Am. Chem. Soc. 136 (2014) 9280–9283. doi:10.1021/ja504802q.
- [70] Z. Zhang, M.N. Hedhili, H. Zhu, P. Wang, Electrochemical reduction induced self-doping of Ti³⁺ for efficient water splitting performance on TiO₂ based photoelectrodes, Phys. Chem. Chem. Phys. 15 (2013) 15637–15644. doi:10.1039/c3cp52759j.
- [71] L. Aïnouche, L. Hamadou, A. Kadri, N. Benbrahim, D. Bradai, Solar Energy Materials & Solar Cells Ti³⁺ states induced band gap reduction and enhanced visible light absorption of TiO₂ nanotube arrays : Effect of the surface solid fraction factor, Sol. Energy Mater. Sol. Cells. 151 (2016) 179–190. doi:10.1016/j.solmat.2016.03.013.
- [72] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-Treated TiO₂ Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Lett. 11 (2011) 3026– 3033. doi:10.1021/nl201766h.
- [73] H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu, F. Huang, Black TiO₂ nanotube arrays for high-efficiency photoelectrochemical water-splitting, J. Mater. Chem. A. 2 (2014) 8612–8616. doi:10.1039/c4ta00176a.
- [74] J. Huo, Y. Hu, H. Jiang, C. Li, In situ surface hydrogenation synthesis of Ti³⁺ self-doped TiO₂ with enhanced visible light photoactivity, Nanoscale. 6 (2014) 9078–9084. doi:10.1039/c4nr00972j.

- [75] J. Song, M. Zheng, X. Yuan, Q. Li, F. Wang, L. Ma, Y. You, S. Liu, P. Liu, D. Jiang, L. Ma, W. Shen, Electrochemically induced Ti³⁺ self-doping of TiO₂ nanotube arrays for improved photoelectrochemical water splitting, J. Mater. Sci. 52 (2017) 6976–6986. doi:10.1007/s10853-017-0930-z.
- [76] J. Lee, Z. Li, L. Zhu, S. Xie, X. Cui, Ti³⁺ Self-Doped TiO₂ via Facile Catalytic Reduction over Al (acac)
 ³ with Enhanced Photoelectrochemical and Photocatalytic Activities, "Applied Catal. B, Environ. 224 (2018) 715–724. doi:10.1016/j.apcatb.2017.10.057.
- [77] H. Li, J. Chen, Z. Xia, J. Xing, Microwave-assisted preparation of self-doped TiO₂ nanotube arrays for enhanced photoelectrochemical water splitting, J. Mater. Chem. A. 3 (2015) 699–705. doi:10.1039/C4TA05021E.
- [78] C. Mao, F. Zuo, Y. Hou, X. Bu, P. Feng, In Situ Preparation of a Ti³⁺ Self-Doped TiO₂ film with Enhanced Activity as Photoanode by N2 H4 Reduction, Angew. Chemie. 126 (2014) 10653–10657. doi:10.1002/ange.201406017.
- [79] Y. Yang, J. Liao, Y. Li, X. Cao, N. Li, C. Wang, S. Lin, Electrochemically self-doped hierarchical TiO₂ nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study, RSC Adv. 6 (2016) 46871–46878. doi:10.1039/c6ra05805a.
- [80] X. Zhang, W. Hu, K. Zhang, J. Wang, B. Sun, H. Li, P. Qiao, L. Wang, W. Zhou, Ti³⁺ Self-Doped Black TiO₂ Nanotubes with Mesoporous Nanosheet Architecture as Efficient Solar-Driven Hydrogen Evolution Photocatalysts, ACS Sustain. Chem. Eng. 5 (2017) 6894–6901. doi:10.1021/acssuschemeng.7b01114.