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ABSTRACT 
 

We simulated the growth of the viscous fingers in a Hele-Shaw cell, a Laplacian growth, by 
a numerical solution. We solved a Laplace equation numerically with boundary conditions 
that indicated a pressure jumping due to the surface tension in the interface of the two 
fluids. By using Darcy’s law, we gained the time evolution of the interface and then 
visualized it in MATLAB.  Subsequently, we examined the effects of several parameters in 
forming the fingers in rectangular cells and compared the results with the theoretical 
predictions which had a desirable agreement with our experimental findings. Our findings 
indicated that wave-lengths scale well with the control parameter in all conditions. 
Furthermore, we estimated the time evolution of the interface for Newtonian and non-
Newtonian fluids in a circular cell, for Newtonian fluid, in agreement with experimental 
finding and theoretical prediction for dominant pattern was tip splitting. For non-
Newtonian fluids from Shear-Thinning kind, we used two generalized Darcy’s equation, we 
found that in both cases the tip dose not split but it will be sharped, finally we found that 
the two different model suggested for generalized Darcy’s low (Bonn’s model and Kondic’s 
model) are in good agreement with each other and also with the experimental findings.   
 
Keywords: Saffman-Taylor instability, Viscous Fingering, Yield Stress, Shear-Thinning, 
Darcy’s Equation.  
 
  

1.  INTRODUCTION  
 
Pushing a fluid with less viscosity into a fluid with more viscosity in a Hele-Shaw cell which 
results in Saffman-Taylor instability has recently attracted many scholars [1-3] because this 
instability is the offspring of the viscous fingering formation and refers to the appearance of 
finger-like interfacial patterns [2]. In this instability, [4] the growth of fingers is a sort of 
Laplacian growth. This interesting phenomenon is regarded as a representative of interfacial 
pattern formation and has been studied numerously, from various perspectives, since it also 
frequently occurs in nature and industrial applications, such as sugar refining, carbon 
sequestration, enhanced oil recovery [5], oil well cementing [9], printing devices [8], 
chromatographic separations [7], coating, adhesives, and growth of bacterial colonies [6]. 
Viscous fingering in a traditional Hele-Shaw cell [11-10], made of two parallel flat plates with a 
small gap, has received much attention as a suitable framework to analyze interfacial 
instabilities in narrow confined passages, e.g., in porous media [11]. The Saffman-Taylor 
instability problem for non-Newtonian fluids is not very well defined [12] due to complex 
rheological behaviors exhibited by these fluids. The effects of several key non-Newtonian 
properties have been investigated, such as yield stress [13, 1, 15, 16], shear-thinning [2, 9], 
shear-thickening [9] and elastic behaviors [12, 17]. New, diverse classes of problems have been 
discovered [17, 18], e.g., snowflake-like patterns [11] and branched, fractal, or fracture-like 
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structures [19]. In particular, it has been found that shear-thinning effects induce dendritic 
patterns (with side branching) or crack-like patterns (with angular branches and sharp tips) 
[23, 3, 20]. Shear-thickening features may widen or narrow the finger width [21]. Viscoelastic 
properties have been found to strikingly modify Newtonian morphological patterns. For theses 
fluids, Lindner et al. [13] have discovered the existence of a yield stress regime (with ramified 
structures) and a viscous regime (with a single finger) at small and moderate velocities. Maleki 
et al. [1] have also observed a side-branching regime at larger velocities. Numerical simulations 
of Ebrahimi et al. [14] confirmed some of the observed behaviors for these fluids. Finally, a 
fluid’s thixotropic drastically affects the finger shape, leading to chaotic behaviors at longer 
times [25]. 
 
Many experimental and theoretical works are performed in this regard and also are performing 
[1-23]. For example, Kondic performed several simulations in this case [22-23].  In a laboratory 
viscous fingering experiment, measurements are performed in a linear Hele-Shaw cell 
consisting of two glass plates separated by a thin spacer. The cell is filled with the viscous fluid, 
after which the less viscous fluid is forced (for instance, under pressure) into the channel. 
Usually, one quantifies the width of the finger (relative to the channel width) as a function of the 
finger velocity. Another example in [1] was observed different regimes that lead to different 
morphologies of the fingering patterns, in both rectangular and circular Hele–Shaw cells, which 
these results were in rather good agreement with the theoretical predictions. Another one 
experimentally works in the Saffman-Taylor instability of air invasion into a non-Newtonian 
fluid was studied by [22].  
 
 
2. THOERETICAL FOUNDATION  
 
Darcy’s law obtains from replacing boundary conditions in the Hele-Shaw flow in the Navier-
Stokes equation and exact analytical solutions for this equation are low. Laplace’s equation for 
quasi-steady normal diffusion in the cylindrical and Cartesian coordinates, are respectively: 
 
(1/ρ)(∂/∂ρ)(ρ∂ /∂ρ)+ (1/ρ2) (∂2/∂2φ) = 0, ∂2p/∂y2  

 + ∂2p/∂x2 = 0            (1) 
  
In the quasi-steady approximation, we are solving ∂/ ∂t = D2 in a regime in which ∂φ/∂t can 
be neglected. The boundary ∂Ωz (t) is assumed to be an equi-potential, or constant-field, surface 
satisfying the boundary condition φ = 0. Alternatively, we can write (1) as: 
 
∂/∂t = -. F                                                                                                                                                              (2) 
 
Where the flux F is defined as 
 
F = −Dφ.                                                                                                                                                                   (3) 
 
The phenomenon which satisfies this theory is known as Laplacian Growth Phenomena and a 
physical example of this process is viscous fingering in a Hele-Shaw cell [7]. Darcy’s law in a 

porous medium or Hele-Shaw cell states that the velocity is given by u = (- b2 / 12 ) ∇P, where 
the velocity satisfies the continuity equation and the pressure satisfies Laplace’s equation: 
 
∇ · u = 0, ∇2P = 0.                                                                                                                                                    (4) 
 
That η is viscosity of fluid and b is spacing between plates of cell.  
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If we assume that we have a bubble of less viscous fluid at an essentially constant pressure  P = 
P0 pumped into a more viscous fluid moving in a field u proportional to ∇P, then the velocity of 
the boundary is given by 
 
v = u = μ∇P.                                                                                                                                                               (5) 
 
Saffman and Taylor (1958) studied a quasi-two-dimensional system in which a fluid is trapped 
between two flat plates, known as Hele-Shaw cell. A second fluid is injected through a hole in 
the top of the system, which leads to a pressure gradient. The pressure gradient induces a 
velocity field; the height-averaged velocity is also given by (5), where μ is the viscosity of the 
fluid. 
 
 
3. METHODS AND RESULT  
 
3.1 Rectangular Cell 
 
First Darcy’s equation in the rectangular cell that in fact leads to the Laplace’s equation for 
pressure in the Cartesian coordinates, i.e. ∂2p/∂y2   + ∂2p/∂x2 = 0 solved numerically with 
computer then with exercising the small perturbation ξeiky in the bound, we simulated the 
motion of the bound with numerical solution in the MATLAB. Then the following considerations 
were regarded: 
 
1- The time evolution of fluid  

 
We obtained the time evolution of Newtonian fluid and simulated fingering patterns that is 
shown in Figure 1. Underneath, the time evolution of several fluids is shown that every curve in 
the profiles shows bound of fluid in a moment.   
 

 
Figure 1. The time evolution of fingers. 

 
2- Comparison with the theory by considering the effect of parameters in the Newtonian fluid 

 
a. Effect of viscosity (η) 

 
Several fluids that have only different viscosity have been considered. According to 
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by increasing viscosity, wave-length should decrease. Figure2-b shows a fluid that its viscosity is 
fifteen-fold of fluid shown in Figure 2-a. Both program outputs (Figures 2-a & 2-b) and graph 2-c 
uphold this subject.  
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Figure 2. Output of program for (a) fluid with less viscosity and (b) fluid with more viscosity, (c) 

comparison of wave-lengths graph. 

 
b. The effect of spacing between  (b) 

 
Several fluids that have only different spacing between the plates of Hele-Shaw cell have been 
considered. According to (6) by increasing b, wave-length should increase, Figure 3-a shows 
conditions that b for it is only two & half of a fold of Figure 3-b. program outputs (Figures 3-a & 
3-b) and graph 3-c uphold this subject.  
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Figure 3. Output of program for (a) b=0.25 and (b) b=0.1, (c) comparison of wave-lengths graph. 

 
c. The effect of pressure gradient  on the fluid (p) 

 
In this case, with all conditions are the same, only the pressure gradient on the fluids is 
different. The pressure gradient in the case shown in Figure 4-b, is for times of the pressure 
gradient for fluid in Figure 4-a. Figures 3-a, b & c show that the results of the program are in 
agreement with prediction of Saffman-Taylor theory. The higher pressure gradient accelerates 
the creation of perturbation and the formation of fingers. 
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Figure 4.  Exercised pressure is in a) 0.1 and b) 0.4. Graph c) shows the fluid in more 

pressure perturbs rather and forms finger. 

 
d. Comparison with the theory by considering control parameter(1/B) 

 
According to classical Saffman-Taylor instability, wave-length scales with control parameter 
defines as  
 
1/B= (σ/12ηU) (w/b)                                                                                                                                           (7) 
 
W is width of cell. On the other hand graph wave-length of fingers independent of all parameters 
posed on the unit age curve control parameter. We performed this exam on our results, as can 
be seen in Figure 5 there is exactly a unique curve for wavelength in different conditions, which 
means the control parameter correctly and completely scales the wavelength, in agreement with 
the prediction of theory. 
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Figure 5. Wave-length graph unit age control parameter. 

 
3.2 Circular Cell 

 
3.2.1 Newtonian Fluid 

 
Here again Darcy’s equation in the circular cell that in fact leads to the Laplace’s equation for 
pressure in the cylindrical coordinates, i.e. (1/ρ)(∂/∂ρ)(ρ∂/∂ρ)+(1/ρ2)(∂2/∂2φ) = 0 is solved 
numerically with computer then  with exercising the small perturbation ξcos(4) in the bound, 
we simulated the motion of the bound with numerical solution in the MATLAB and obtained 
Figure 6 for this fluid. 

 
Figure 6. Time evolution of Newtonian fluid in the circular cell. 
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3.2.2 Non-Newtonian Fluid 
 

a. Bonn’s model 
 

For the non-Newtonian fluid that its viscosity along flow varies, first we should adopt a model 
for the way of how viscosity along flow varies. Bonn and et al [9] presented a model that 
viscosity in it is variable and a function of shear rate is as:  
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b
v p
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
                                                                                                                                              (7)   

 
that    is shear rate and pertains to velocity of fluid in the Hele-Shaw cell and b with 

equation  =   /  . They named the equation (7) the generalized Darcy’s law [9]. We by using 
this model obtained Figure 7 for time evolution of a shear-thinning fluid that sharpening in the 
tip of finger well shows for this fluids likewise occurs in the laboratory.   

 
Figure 7. Time evolution of a non-Newtonian fluid in the circular cell based on Bonn‘s model. 

 
b. Kondic’s model 

 
In this model presented by Kondic and et al [6] for non-Newtonian fluid, viscosity is supposed to 
be a function of pressure gradient so that Darcy’s equation becomes  
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We obtain Figure 8 for time evolution of a shear-thinning based on this model that is in good 
agreement with both Bonn’s model and our experimental results. 
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Figure 8. Time evolution of a non-Newtonian fluid in the circular cell based on Kondic‘s model. 

 

 

4. CONCLUSION 
 
We simulated the growth of viscous fingering due to Saffman-Taylor instability and could obtain 
results for Newtonian fluid in the rectangular cell that is in complete agreement with both 
experimental results on one hand and the prediction of Saffman-Taylor instability on the other. 
The parameters in this phenomenon have simulated in the computer affect in the same way that 
the theoretical foundations predict and according to what is observable in the laboratory. We 
also obtained time evolution of Newtonian and non-Newtonian fluid. For Newtonian fluid, the 
dominant pattern was tip splitting, in agreement with experimental results. For shear-thinning 
Fluids, we checked both generalized Darcy’s equation, suggested by Bonn [24] and Kondic [22-
23]. We found that in both cases, the tip dose not split but it will be sharpened, which are in 
agreement with experimental results reported for shear thinning fluids, at the same time, we 
found that these two different models( Bonn’s and Kondic’s models) suggested for generalized 
Darcy’s low are in good agreement with each other as with the experimental findings. Finally we 
used a simple numerical method based on solving the Laplacian growth to show and analyze the 
viscous fingering process due to Saffman-Taylor instability. In this method the results are in 
good agreement with experiment, and states that the both Bonn’s and Kondic”s model are the 
same.  
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