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 1.  Introduction  
 
For very long time carbon was known as the fundamental component of different 

chemical species. These compounds create foundation of living organisms, including plants 
and animals. It is therefore understandable that these compounds were subject of intensive 
research, creating an immense branch of science known as organic chemistry.  
 The investigations in these areas were very intense, resulting in many discoveries 
which affected not only scientific understanding of fundamentals of chemistry, physics and 
biology but also transformed many areas of industrial activity and deeply changed our 
everyday life. It is therefore surprising, that the subject was not exhausted; on the contrary, 
recent discoveries channeled interest of many researchers in this direction. Among 
significant achievements in the area, the most prominent was the discovery of nanosize 
carbon structures, such as fullerenes [1, 2], carbon nanotubes (CNTs) [3] or graphene [4–6] 
and related materials [44]. These discoveries heralded advent of new branch of science and 
nanotechnology.  
 The molecular nanostructures of carbon (CNTs) have interesting optical and 
electrical properties, which can be modified by introduction of foreign atoms [7]. It is also 
important that this development was connected with the progress in the most important 
characterization tool. High Resolution Transmission Electron Microscopy (HRTEM) that 
allowed studying these structures with atomic precision. Another discovery of self-standing 
graphene attracted more attention to this area [4–6]. This discovery was even more 
surprising, as graphene is intimately related to graphite, the material known for centuries. 
The electric properties of graphene made this material a focal point of the semiconductor 
research promising new very attractive applications in high-speed electronics [8, 9].   
 Application of graphene-based devices requires deposition of graphene on a 
mechanically strong support. The optimal choice would be fabrication of graphene on a 
carbon-based material such as silicon carbide. It was therefore fortunate that graphitic films 
can be grown on SiC surfaces [10–12]. It was recognized only recently that few atomic 
carbon layers have the electronic transport properties of graphene [13]. It is evident that 
most important is the structure of the SiC–graphene interface. Therefore the atomistic 
structure was intensively investigated [14, 15]. Despite some progress, the relations between 
the atomistic structures of carbon layers deposited on SiC surfaces are not well understood.  
 Another aspect of the interaction of graphite-like carbons layers with solid supports 
is related to carbon–metal structures. In contrast to graphene–SiC structures, which are 
relatively easy to obtain, the carbon–metal structures are more difficult to synthesize. This is 
related to the fact that carbon is easily dissolved in liquid metals, creating solid solutions or 
in higher concentrations, metal carbides [16]. Therefore in order to synthesize such 
structures, rapid high-temperature methods have to be used. Fast, high-temperature stage of 
the synthesis of carbon layers on metal surfaces should be followed by rapid cooling down 
of the system in order to prevent dissolution of carbon layer in the metal interior. Among the 
processes that are able to fulfill such criteria, the most effective are: Huffman–Krätschmer 
arc process [17] and combustion synthesis [18, 19]. Therefore combustion synthesis is a 
technologically important process. In particular, application of the combustion process to 
creation of Me–C structures.  

 It has to be noted that carbon encapsulation of metal nanoparticles changes their 
properties. These particles create a new-type material combining magnetic and other 
physical properties of metals with chemical resistance of carbon. They create a new type of 
structural nanosize materials, which demonstrate the potential of nanotechnology. As such 
their properties are extremely interesting from the point of materials science and also for 
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 2.2  Purification Procedure for Combustion Products  
  

Carboniferous material with other products of reactions remained on the bottom of 
the reacteur. The material will be rinsed with water to remove sodium, treated in boiling 
nitric acid for 3 h to remove sodium oxide and then will be rinsed with water again. After 
that the solution will be filtered, and the remaining powder dried [36].  

The soot, sponge or salts-like products, obtained in both types of synthesis processes, 
have to be subjected to purification procedure in order to remove non-encapsulated metal 
and carbide. The purification procedures have to remove simple inorganic salts. In order to 
remove these salts it is necessary to anneal combustion products at 323 K for 6 h in 50 % 
HNO3 and then to flush by distilled water until complete removal of the acid is achieved [26, 
38, 43]. In order to remove uncoated iron or carbides, the samples have to be boiled in 2M 
HCl (24 h) and then washed in distilled water and subsequently in ethanol and annealed in 
dry air atmosphere at 350 K. In order to remove amorphous carbon, the chemical oxidation 
by KMnO4 dissolved in 50 % sulfuric acid could be used. Again the sample has to be 
washed thoroughly with distilled water and annealed in dry air [41, 42, 45].  

 
 

 3.  Results and Discussion  
  
 3.1  Characterization of Products  
  

The presence of crystalline MgO, organic materials, NaO2 and carbon as a source of 
1D nanostructures the in the products was confirmed by XRD (Fig. 3).  
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Fig. 3: XRD pattern of the combustion products obtained from carbonate systems with and without 

metals catalysts: (green line) Na2CO3/Mg, 1 atm argon, (bleu line) Na2CO3/Mg/Fe, 1 atm argon, 
(pink line) Na2CO3/Mg/Ni, 1 atm argon, (dark red line) Na2CO3/Mg/Co, 1 atm argon, (rot line) 

CaCO3/Mg, 1 atm argon. 
 
  The noncoated iron or carbides and encapsulated iron is not detected because is 
segreget with small concentration. The EDX analysis (Fig. 6), demostrate that the reaction 
under neutral atmosphere leads to a deep conversion of carbonates. For producing fibrous 
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products (Fig. 4), the Na2CO3 system proved to be the most promising one; in other tested 
carbonate systems, except Li2CO3, the content of fibrous phase was negligibly small. The 
FESEM pictures (Fig. 4) show the morphology of the products with some 1D nanostructures 
resembling carbon nanotubes (CNTs) and nanofibers (Fig. 4) without and with Fe, Ni, Pd 
and Co catalysts (Fig. 4(a)–(m)), in comparison with the nanostructures reported in [40] (Fig. 
4(f), (g), (h)).  
 

(a) 
 

(b) 
 

(c) 
 
 
 
 
 
 

(d) 
 



 
 

(e) 
 
 

 
(g) [40] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Int. J. Nanoeelectronics and 

 
(f) [40

 

 
(h) [40

 

Materials 7 (20

0] 

0] 

014) 103-117 

109 



Badis Bendjemil, et al. / Pharmacological molecule based on nanocarbon container… 

 

110 
 
 

(m) (n) 
Fig. 4: FESEM pictures of the combustion products obtained from carbonate systems with and 

without metals catalysts: (a) Na2CO3/Mg, 1 atm argon, (b) Na2CO3/Mg/Fe,1atm argon, (c) 
Na2CO3/Mg/Ni, 1 atm argon, (d) Na2CO3/Mg/Co, 1 atm argon, (e) CaCO3/Mg, 1 atm argon, (f) 

Na2CO3/Mg/Co, 10 1 atm (f), air, (g) Na2CO3/Mg/PTFE/Fe, 10 atm, air [40], (h) FeCO3/Mg, 10 atm, 
air [40], (m) CaCO3/Mg/Pd, 1 atm argon, (n) CaCO3/Mg/Nd, 1 atm argon. 

 
 In fact, Huczko et al. [26] and Alekseev et al. [36] have shown that condensing 
carbon vapors by combustion of carbonates (produced via SHS) can yield CNTs. Also, 
Bendjemil et al. [37, 38] reported on production of carbon nanotubes upon gas combustion 
(decomposition of Fe(CO)5 at low pressures and moderate temperatures, one should mention 
that CO2

), which is in fact, an intermediate reactant of our carbonate decomposition under 
combustion synthesis conditions, can be reduced to CNTs by metallic Li [39]. 

 The images of the typical carbon-shell, graphite layers, Fe or Fe3C containing 
encapsulates are presented in Fig. 5 (a)–(d). In these images the following particles are 
observed: Fe or Fe3C nanoparticles, surrounded by graphitic envelope, adhered to the metal 
nanoparticles; the nanoparticles surrounded by thin graphite envelopes on which secondary, 
much thicker graphite layer is created (Fig. 5(a)–(c)) and nanotubes. Such thick graphite 
structures are created due to nonuniform enveloping of the grains surfaces, resulting in 
encapsulation of the grain in the zones of considerably different temperatures. The series of 
images demonstrates transition from amorphous carbons structure, presented in (Fig. 5(d)), 
the presented nanoparticles are shown in the insets located in the corners. Fig. 5 (e), (f), (g), 
(h) corresponding to Na2CO3/Mg, systems 1 atm argon, that represented organic and mineral 
materials resulting from the reactions and nanotubes. 
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(c) 

 
(d) 

 

(f) (h) 
 

Fig. 5: (a), (b), (c), (d) corresponding to the HRTEM pictures of the nanostructures obtained in 
combustion synthesis of Na2CO3/Mg/Fe systems, 1 atm argon, showing encapsulation of Fe or Fe3C 
nanoparticles of about 20 nm thick by graphitic layers: inset in the right corner shows the magnified 
part of the nanoparticle Fe and Fe3C; (c) amorphous carbon; (b) and (d) nanoparticles by additional 
thick graphite layers growing on the thin C- particles, (e), (f), (g), (h) corresponding to Na2CO3/Mg, 

systems 1 atm argon, that represented organic and mineral materials resulting from the reactions, 
nanotubes and graphite layers. 

 It has to be noted that the combustion synthesis suffers from some drawbacks at the 
moment. This are related to relatively small portion of useful Me-containing products. This 
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especially important for medical applications where chemical purity requirements are 
particularly stringent.  

Experiments are no in progress using the reaction mixture: 
2CF+2NaN3=2NaF+2C+3N2 using metalcene Me (CO)5 (Me= Fe, Co, Ni) as source of 
metal magnetic nanoparticles encapsulated carbon in core shell structure according to the 
(Figure 7). This research will be achievement of higher content of Me-containing particles, 
control of particle size distribution and also the structure of the particles. The combustion 
synthesis will be critically compared in the near future with combustion detonation and 
shock synthesis (CDS).  
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