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varying displacements of the atoms with respect to their reference-lattice positions) [31]. 
There are two basic technique of X-ray line profile analysis: 

 
i- Fourier space technique. 
ii- Real space technique like (a) integral breadth, (b) variance analysis, (c) peak fitting 

methods [32].   
  
 C. Integral Breadth (β) 
       

Our study had been focused on the second type (real space technique), especially the 
integral breadth which is frequently characterized by means of one or two breadth measures 
FWHM and β which is given by [32]:  

 
ߚ ൌ ௠௔௫ܫ/ܽ݁ݎܣ                                                                                            (8) 

 
where: 
 Integral Breadth =  ߚ 
 .Area under the peak =  ܽ݁ݎܣ 
 ௠௔௫  = Maximum intensityܫ 
 
 D. Dislocations density (ρ) 
       

Dislocation density is an important material properties which gives the length of the 
dislocations present per unit volume (m/m3) [32]. The investigation methods of individual 
dislocations could be divided into four main groups [33]. The first method, known as the 
surface method is based on the formation of etch pits or hillocks at the site where a 
dislocation meets the surface. The second method is X-ray diffraction topography. This 
method introduces local differences at dislocations in the scattering of X-rays. The other 
method used by Hedges and Mitchell in 1985 is the decoration method [34]. The dislocation 
density investigated using the same method in β-Sn single crystals [35]. It is generally 
observed that dislocation density depends on crystal shape. Ojima and Hirokowa and 
Duzgun et.al. in 1967 showed that the dislocation density varies with the crystal shape [36]. 
      The plot of the tan (θ) on the x-axis and the (integral breadth)2 on the y-axis as 
shown in Fig. 15, we get the second order polynomial by fitting the result curved depending 
on the following equation to determined the value of U, V and W [32]: 
 

(b)2 = U tan2(θ) + V tan(θ) +W                                                (9) 
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      The other parameters are depending on the previous two parameters (FWHM and 
the integral breadth). These parameters are: 
 
 1. Shape Factor (Φ)  
       

Depending on the results of X-ray diffraction and crystallography the shape factor is 
used to correlate the size of sub-micrometer particles or crystallites, in a solid to the 
broadening of a peak in a diffraction pattern, so the line profile resulting from the XRD 
patterns could be calculated from the relation [32]:  

 
Φ = Δ / β                                                               (15) 

 
      It is important to realize that the Scherer's formula provides a lower bound on the 
particle size. The reason for this is that a variety of factors can contribute to the width of a 
diffraction peak; besides particle size, the most important of these are usually 
inhomogeneous strain and instrumental effects. If all of these other contributions to the peak 
width were zero, then the peak width would be determined only by the particle size and the 
Scherer formula would apply. If the other contributions to the width are non-zero, then the 
particle size can be larger than that predicted by the Scherer formula, with the "extra" peak 
width coming from the other factors [32]. 
 
 2. Texture Coefficient (Tc)  
       

So to describe the crystallization, the texture coefficient, TC (hkl) is calculated using 
the expression [33]: 

 
TC (hkl) = [(I(hkl) / Io(hkl )] / [ Nr

-1 Σ I(hkl) / Io(hkl)]                        (16) 
 
where:  
I  = The relative intensity.  
Io  = The ASTM relative standard intensity.  
Nr  = The number of reflections.  
(hkl) = Miller indices. 
       

The (TC) depends on the molarity of the precursor solution; the high c-axis 
orientation at higher molarity is due to the combined effect of increase in Sn incorporation, 
increase in growth rate and re-orientation effect as shown in figure 17 [34]. 
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Table 1: The main planes observed with different substrate temperature and there specifications 
 

Sample Temperature 
110 101 200 

2θ I/Io d(nm) 2θ I/Io d(nm) 2θ I/Io d(nm) 

ASTM  26.611 100 0.333 34.195 75 0.262 37.949 21 0.233 

0.4 400 26.5483 100 0.33548 34.0721 31 0.26925 38.052 31 0.2363 

450 26.6098 100 0.33472 33.9014 16 0.264210 38.015 15 0.2365 

500 26.5633 100 0.33529 34.172 17 0.262179 37.985 24 0.2366 

550 26.5483 100 0.33548 34.0721 31 0.262925 38.052 31 0.2363 

 
 Table 2: The Integral breadth–dislocation density data of investigated thin films 
 

Molarity 
(M) 

Temper-
ature 
(oC) 

Investi-
gated 
line 

Integral 
breadth 

(β) 
(deg.) 

FWH
M 

(deg.) 

Shape 
factor 
(Φ) 

Micro 
strain

% 
(ε) 

Average 
grain 

size (g) 
(nm) 

Texture 
coeff. 
(Tc) 

No.of 
layers 
(Nℓ) 

Dislocation 
density(ρ) 

1014 
(cm/cm3) 

0.4 400 110 1.43 0.675 0.472 -6.065 12.636 1.852 23 5.375 

450 110 1.37 0.642 0.467 -5.794 13.328 2.206 21 1.413 

500 110 0.85 0.44 0.518 -3.601 19.384 1.923 19 0.0069 

550 110 1.01 0.421 0.417 -4.282 20.259 1.852 18 0.000354 

 
 Lattice Constants (a, c) 
      

SnO2 thin films show a tetragonal structure and Polycrystalline nature with 
orientation (110) direction perpendicular to the substrate comparing with (ASTM data card 
46-1088). This plane is strongly dependent on the deposition conditions. 
      The lattice constants belong to the (110) plane of undoped SnO2 films deposited 
under various temperature are given in Table 3. The lattice constants obtained are found to 
be good agreement with ASTM data card 46-1088 powder SnO2 sample. 
 

Table 3: Lattice constants as a function of molarity of undoped SnO2 

 

Samples Temperature ao (nm) co   (nm) 

0.4 400 4.735 3.188 

450 4.744 3.194 

500 4.733 3.186 

550 4.741 3.192 

ASTM - 4.750 3.198 

 
 3.2 Optical Properties 
       

The transmittance spectra recorded for the films deposited on glass substrates in the 
wavelength range of (300-900)nm is shown in Fig. 18(a). An uncoated (blank) substrate has 
been used as the reference for obtaining the transmittance spectra. From this figure, we can 
observed that the transmittance increase by increasing substrate temperature except for 
550oC where the transmittance value decrease comporting with other temperature this may 
occurring because of the increasing in the thickness. Through the study of transmittance 
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spectrum for all thin films the transmittance of the films found to be very high at 
wavelengths in visible region and the best transmittance observed at 500oC within region 
(300-900)nm, where the transmittance value reach 80%. While the absorbance spectrum was 
submitted to the relation [40]: 

 
A = log10 (1/T)                                                              (19) 

 
      Where: A: the absorption, T: the transmittance. The behavior of absorption curves 
were inversely to the behavior of the transmittance curves and because of the last were 
higher so the absorption smaller and the Fig. 18 obvious the behavior of transmittance and 
absorption, as a function of wave length at different substrate temperature. 
 
  
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
Fig. 18: Transmittance & Absorbance spectra of 150 nm SnO2 films with wavelength at different 

substrate temperature (a)Transmittance, (b) Absorbance. 
 
  Fig. 19 shows the variation of (αhν)2 & (hν) for the determining the band gap Eg of 
SnO2 film by extrapolation of curve. The incident photon energy is related to the direct band 
gap Eg by equation [40]: 
 

(αhν) α (hν - Eg)1\2                                                                 (20) 
 
The optical band gape was estimated in lower wave length region and it was found to be (2.8, 
3.3, 3.6 and 3.7) eV. 
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Fig. 19: Toue Plot of (αҺυ)2 with photon energy in SnO2 thin film at different substrate temperature. 
 
 3.3 Piezoelectric properties 
       

The piezoelectric properties of SnO2 thin films can be observed in table 4 and mainly 
include: 

 
1- The resonance frequency 

  
The resonance frequency can be determined by measuring the output voltage as a 

function of frequency and the result show that the increasing in the temperature caused to 
shifting in the resonance frequency to higher ranges up to 10MHz as we shown in figure 20. 
This is meaning that the sensitive of the film enhance when the temperature increase this 
may be due to increasing in the homogeneity of the film and the arrangement of the grains. 
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Fig. 22: The relation between resonance frequency and structure parameter as a function of substrate 

temperature (a) with grain size, (b) with micro strain and (c) with dislocation density. 
 
2- Damping Coefficient (δD) 

  
The damping coefficient (δD) can be calculated using the relation 3. Fig. 23 shown 

the behavior of the wave with time for different temperature, the reduce in the damping 
coefficient means the vibration continues for longer time because of increasing in the grain 
size and the arrangement of crystalline when the temperature increasing (400–550)oC. 
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Fig. 23: The relation between the time of resonance and the damping for 0.4M at different  substrate 

temperature (a) 400, (b) 450, (c) 500 and (d) 550. 
 
      The damping coefficient (δD) of the SnO2 thin film was carried out from the graph 
and using the relation: 
 

δD = A1 / A2                                                               (21) 
 
      Fig. 24 shows clearly extrusive relation between damping and both grain size and 
micro strain, but there is an inverse relation between damping coefficient and dislocation 
density, this is meaning that the enhanced of films structure cause to increase the damping 
coefficient which is mean the sensitivity of the film increase.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d)

(a) (b) 
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Fig. 24: the relation between damping coefficient and structure parameter as a function of substrate 

temperature (a) with grain size, (b) with micro strain and (c) with dislocation density. 
 

3. Quality Factor (Q) 
 

    The relationship between the quality factor and grain size can be observed in Fig. 
25(a), there is an inverse behavior between them, this may be due to increasing regular 
crystallization make the sensitivity of the films better and sensing high resonance frequency, 
which in other hand decrease the quality factor. The Fig. 25(b) shows that there is an 
extrusive behavior between quality factor and micro strain, where the decrease in micro 
strain with increase the substrate temperature means the homogeny of the films increase and 
this have the same effect on the quality factor. Fig. 25(c) shows that for there is a decreasing 
in quality factor when the dislocation density decreased for all molarities in a different 
substrate temperature, and this may be because of increasing in grain size and decreasing in 
grain boundaries which means enhanced in the structure cause enhanced in the sensitive of 
the films and all of this reasons required decrease in the quality factor. 

(c)
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Fig. 25: the relation between quality factor and structure parameter as a function of substrate 
temperature (a) with grain size, (b) with micro strain and (c) with dislocation density. 

 
Table 4: The result of piezoelectric properties. 

 

Molarity 
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(oC) 
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Surface 
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velocity 
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Characteristic 
frequency 

fe 

(kHZ) 

0.4 400 100 484 2.5 3.41 1538 161.7 

450 150 4595 2.79 3.06 2279 4810.5 

500 1500 2262 2.86 2.99 9877 2663.5 

550 3500 293 3.36 2.59 10422 366.13 
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 Conclusions 
   

The SnO2 film prepared using Chemical Spray Pyrolysis method. SnO2 film was 
found polycrystalline structure with preferred direction phase in (110) and exhibit a good 
structure properties which enhanced by increasing temperature. The best transmittance of 
SnO2 films is (79.3%) for substrate temperature 500oC within wavelength range (300-800) 
nm from optical properties and this films have indirect piezoelectric phenomena where the 
particle was polarized when we applied an electrical current and its mechanical stress, hence 
the electrical force transformed into mechanical stress. 
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