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ABSTRACT

DAS system based on @-OTDR technique suffers from random noises that affect the signal-
to-noise-ratio of the extracted signals. This results in high false alarm rate, reducing the
capabilities of the systems to detect vibration signals. This paper presented a thorough
analysis of a denoising method using discrete wavelet function (DWT). We implemented
and compared different mother wavelets such as Symlet 4, Haar, Daubechies 4 (Db4),
Biorthogonal 4.4 (Bior4.4), Coiflets 3 (Coif3), Discrete approximation of Meyer wavelet
(dmey), Fejér-Korovkin filters 8 (fk8) and Reverse Biorthogonal 6.8 (rbio6.8), using
multiple levels of decomposition. Four denoising thresholds, Empirical Bayes, Universal
Threshold, Stein's Unbiased Risk Estimation (SURE), and Minimax Estimation (Minimax)
were characterized using soft threshold rule. From the results obtained, the combination of
the Daubechies 4 wavelet function, level 3 decomposition, SURE denoising threshold with
soft threshold rule produces the best denoising performance on the @-OTDR data.
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1. INTRODUCTION

Distributed acoustic sensing (DAS) systems based on phase optical time domain reflectometry
(@-OTDR) has been a subject of detailed investigation in monitoring applications due to its
capability and reliability of detecting minute strains of multiple vibrations and acoustic events
induced by external vibrations along its entire fibre length. The DAS system exploited the
Rayleigh scattering in an optical fibre which has high sensitivity toward disturbances and
provides real-time monitoring. This system has been adopted in various monitoring
applications such as pipeline monitoring, intrusion along perimeter detection, seismic
monitoring, and railway monitoring [1]-[4].

However, the @-OTDR signals can be heavily affected by the noises from vibration of
surrounding events and noises from the configuration setup which include the laser phase noise,
the stochastic nature of Rayleigh backscattering, the laser frequency drift, the thermal noise in
electrical and optical component, and the finite extinction ratio of optical modulator [5]-[8] .
These noises cause a large spike-like pattern in the raw data. The noises affect the SNR of the ¢-
OTDR traces, which causes low visibility of the interference signals, thus produces unreliable
vibration measurement of actual real vibration activities. This in the end might cause false
alarm to trigger.

To reduces the noise, researchers have proposed different denoising techniques with the aims
of improving the signal-to-noise (SNR) and increase the detection capabilities. To date, current
SNR improvement focuses on post-processing algorithms such as moving average and moving
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differential [9], wavelet transform (WT)[10],[11], empirical mode decomposition [12],[13] and
image-based processing such as 2-Dimensional edge detection [14] and 2D bilateral filtering
algorithm [15].

Although other researchers have explored wavelet transform in the @-OTDR application, a
detailed methodology on the selection process of the mother wavelet, level of decomposition,
and threshold rules was not discussed at length. These steps are important steps in denoising
the signals. This paper aims to compare and contrast a battery of denoising method by applying
them to the acquired ¢@-OTDR signals. The best wavelet combination will be determined based
on the calculated SNR.

2. METHODOLOGY

2.1 @-OTDRsetup

The architecture of the DAS system exploited the scattering losses in fibre, particularly Rayleigh
scattering. DAS system based on ¢@-OTDR technique consists of optical fibre which acts as the
sensors to the measures backscatter light from that gated optical pulses into the fibre along its
entire length. A detector is used to measure the reflected light (Rayleigh signal) from the fibre as
pulses of light travel along with the fibre. The acquired backscatter signal at the receiver end
consists of coherence interference of the backscatter signal at different points along with the
fibre within a single pulse [16].
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Figure 1. shows the a) Rayleigh backscattering traces coming from each pulse propagating in
the fibre b) Configuration setup

@-0TDR technique is first accomplished using the direct detection configuration displayed in
Figure 1(b). The light source is an ultra-narrow linewidth distributed-feedback laser operating
at 1550.12 nm. An acoustic-optic modulator converts the continuous light from the laser diode
into a sequence of pulses (AOM) and the pulse repetition period and width were set using a
function generator. The modulated pulses then were injected into fibre under test (FUT), and
the Rayleigh backscatter signals pass through another amplification using a second EDFA where
a bandpass filter is used to remove amplified spontaneous emission (ASE) from the EDFA. A
photodetector (PD) was then used to detect the Rayleigh Teledyne LeCroy HDO6104 Digitizing
Oscilloscope was used to collect and process the information.
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Figure 2. shows the a) Rayleigh backscattering traces coming from each pulse propagating in
the fibre b) superimposed 5000 Rayleigh traces

The raw Rayleigh backscattering coming from each pulse propagating in the fibre can also be
regarded as two-dimensional arrays x (M, N), as shown in the Figure 2(a). N is the number of
sampling points for each trace, while M represents the number of traces that propagate in the
fibre within the specified time interval. 5000 Rayleigh signal traces were reconstructed in the
time domain from data gathered within 100 milliseconds, as illustrated in Figure 2. (b). When a
disturbance occurs on the sensing fibre at position N_k along the row vector, the disturbance
signal can be extracted through one-dimensional array v[M,N_k].
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Figure 3. shows the image constitute to the reconstructed Rayleigh signal traces

Since observing the rebuilt data gives little information on the vibrations event shown in Figure
3, a normalized differential method proposed by Ashry et al. [17] was used to process the raw
traces. From the differential signals obtained, the detected vibration signals in the FUT was
extracted which is located at 980 m. However, the signals were corrupted due to the random
noises existed in the system, thus signal denoising is required to recover and reconstruct
(smoothen) the signals.

2.2 Discrete Wavelet Transform (DWT)

Wavelet methods are widely used for denoising non-stationary signals due to their ability to
reduce noises without losing any important temporal information. The noises in the Rayleigh
signals overlap with the desired signals information, thus wavelet denoising can be used to
remove the background noises through Gaussian distributed approach. This approach assumed
that the original signal, R, which is given by signal of interest, r is corrupted by additive white
Gaussian noise (AWGN), n, which can be represented by = + . Wavelet's method aims to
suppress the noise, n, and recover the r. However, for the case of @-OTDR systems, the noises
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are neither defined nor known, thus, the purpose of denoising these signals are to remove the
noise from the real signal with minimum error.

Discrete wavelets transform (DWT) decomposes a signal using a pair of complementary filters
and down samplers to eliminate unnecessary samples from the filters' output. The signals pass
through a series of lowpass (LPF) and high pass (HPF) filters to decompose the signal. The
signal passes through LPF to get the approximation coefficients and simultaneously processes
through an HPF to generate the detail coefficients for each step, with down-sampling by two.
The DWT equation is given as

(1)

(1= 1= () -

where N is the length of the signal, n is the delay parameter and is the mother wavelet. Also,
because wavelet function is orthogonal and symmetric, and different wavelet functions have
distinct characteristics, the decomposition of the signal using different wavelets produces
different outcomes, thus the denoising impact will vary.

2.3 Algorithms

The DWT is a powerful tool for analyzing non-stationary data such as @-OTDR signals. Figure 4
gives the process of noise removal in (-OTDR signals using wavelet denoising.
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Ravgiraillilgh Differential decompositio Threholding Dt:?ori;ad
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Figure 4. Filtering process for ¢-OTDR signals

The DWT of ¢@-OTDR signals involved the following steps: (i) Signal decomposition: using
wdenoise function in MATLAB, that denoised the signals by the selection of the Mother wavelet,
and decomposition level. (ii) Selection of denoising threshold and threshold rules parameter to
the wavelet coefficient. (iii) Reconstruction of clean signals through inverse discrete wavelet
transform.

2.3.1 Selection on mother wavelet and decomposition level selection

The mother wavelet chosen will affect the precision of the wavelet transform based denoising
output. If the form of the wavelet is similar to the shape of the differential signals, the wavelet
provides excellent denoising performance. Since there are no universal wavelets that work on
every signal, this research focuses on determining the most suitable wavelet specifically for -
OTDR signals. Wavelet families consist of Symlets, Daubechies, Coiflet, BiorSplines, Reverse Bior,
and others which contain different wavelets function with different orders. We implemented a
Symlet 4, Haar, Daubechies 4, Biorthogonal 4.4, Coiflet 3, Discrete approximation of Meyer
wavelet, Fejér-Korovkin filters 8, and Reverse Biorthogonal 6.8 wavelet functions in this
research to find the most suitable wavelet combination that produces the best results based on
@-0TDR data. For denoising, the desired signal, choosing the best decomposition level for
wavelet threshold denoising is equally crucial. Typically, the decomposition level is determined
by the trial-and-error method, and in this study, composition levels 3, 5, 7, and 9 were used to
determine the optimal decomposition level for different wavelet functions.
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2.3.2 Thresholding Selection

Threshold selection is a direct and essential influencing element in the process of wavelet
threshold denoising and choosing a different threshold will result in a different denoising effect.
A few denoising thresholds used to determine the denoising threshold for the desired data are
available in the MATLAB toolbox such as Empirical Bayes, Minimax, SURE, and Universal
Threshold.

Empirical Bayes (Bayes): This technique employs a threshold rule based on the assumption of
independent prior distributions for measurements provided by a mixture model. Due to the fact
that measurements are utilized to estimate the weight in the mixture model, the approach
performs better with a greater number of samples [18].

Minimax Estimation (Minimax): This technique employs a set threshold that is chosen to
achieve the best possible performance in terms of mean square error when compared to an
ideal procedure [19]. The equation to find the optimal threshold can be represented as
followed

(03936+01829 ( () ()] |>32 2)
_{ 0 | <0

Stein's Unbiased Risk Estimate (SURE): It is a level-dependent threshold and based on Stein's
unbiased risk estimate (SURE) [20]. The SURE threshold can be expressed as followed

(3)
(;)= —2CIL 1<)+ [ (U 1)P
=1
Where is the wavelet coefficient, and d is the number of elements in noisy signal denotes
cardinality.

Universal Threshold (UniversalThreshold): This technique employs a fixed-form threshold
that maximizes performance by a factor proportional to log(length(X)). The constant universal
threshold can be defined as followed:

(4)
=v2 ()

There are a few threshold rules that can be applied such as median, mean, soft, and hard.
However, soft and hard thresholds were usually used. The term "hard threshold" refers to the
process of setting elements to zero when their absolute values fall below the threshold.
Meanwhile, soft threshold zeros any detail coefficients with absolute values less than the
threshold, the remaining coefficients are narrowed towards zero.

The effectiveness of a signal denoising approach is determined by how precisely the technique
can eliminate noise from signals while retaining as much information about the original signal
as possible. To evaluate the suggested system's performance in this study, we employed one
distinct metrics: signal-to-noise ratio (SNR). SNR is a frequently used performance metric for
assessing the performance of signal filtration approaches between Rayleigh signals and
denoised signals.

| @)
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3. Results and discussion

Denoising ¢@-OTDR signals play an important role in pre-processing step before analyzing the
acoustic signals detected by the system. Any noises that interrupt the data acquisition will result
in a false alarm, thus reducing the efficiency of the detection systems. To reduce the noise, the
effectiveness of wavelet method has been studied extensively .
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The implemented wavelet functions were evaluated and compared based in its SNR
performance. The SNR was calculated using Equation 5, and it has to be as high as possible.
Additionally, the performance of several levels of wavelet decomposition utilizing various
wavelet functions were also examines. Selected levels were 3, 5, 7, and 9. Table 1 shows the
performance index of the proposed methodology.

Table 1 Performance index for different wavelet functions and level of decomposition

W Wavelet LEVEL = 3 LEVEL =5 LEVEL =7 LEVEL =9

°  Function SNR SNR SNR SNR

1 Symlet 4 13.8369 13.5342 13.4319 134125
2 haar 13.6739 13.4045 133163 13.2992
3 Db 13.8808 13.5178 13.3953 13.3814
4 Bior 4.4 13.8632 13.4603 13.3567 13.3401
5 Coif3 138116 134572 13.3287 13.3031
6 dmey 13.7016 13.3912 13.2719 13.2405
7 k8 13.7580 13.4452 13.3549 13.3460
8 Rbio 6.8 13.6255 13.2582 13.1088 13.0789

From the table, level composition 3 shows the best results in performance parameter, where it
has the highest SNR value compared to other levels of decomposition. In fact, the SNR slightly
deteriorate at higher decomposition level of the function. While for the mother wavelet chosen,
Symlet 4, Db 4 and Bior 4.4 wavelet functions show exceptionally better results compared to
haar, Coif3, dmey, fk8, and Rbio 6.8 in terms and SNR, with an average of 13.8481, however, the
SNR value for DB4 was slightly better than Bior 4.4, which is 13.8808. It should be noted that
the denoising and threshold rule was in default mode, which means that Empirical Bayes with
soft thresholding were being used.

Following that, the influence of various denoising thresholds were examined. The soft threshold
rule was chosen here to preserve the signal's original structure, ensuring that the denoised
signal retains all of its information. Four denoising threshold, indicated in Table 2, examined
Empirical Bayes, Universal Threshold, Stein's Unbiased Risk Estimation (SURE), and Minimax
Estimation (Minimax).

Table 2 Performance index for different wavelet functions and denoising threshold

No Wavelet Bayes UNIVERSAL SURE Minimax
Function THRESHOLD
SNR SNR SNR SNR
1 Symlet 4 13.8369 8.3528 14.9742 10.4951
2 haar 13.6739 8.4218 15.0037 10.4649
3 Db4 13.8808 8.5380 15.5031 10.6331
4 Bior 4.4 13.8632 8.4382 14.8780 10.5649
5 Coif3 13.8116 8.4495 14.9950 10.5786
6 dmey 13.7016 8.4727 14.9279 10.5431
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7 fk8 13.7580 8.6555 15.0174 10.6940
8 Rbio 6.8 13.6255 8.3638 15.0450 10.4710

The SURE threshold technique employing the soft threshold rule performs the best, achieving
the highest SNR (15.5031) in comparison to the other methods. The best wavelet
transformation results were obtained by combining the Db4 wavelet function with level 3
decomposition and SURE threshold technique with soft threshold rule.
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Figure 5. shows the Daubechies 4 wavelet with different denoising threshold a) original
signal b) Empirical Bayes c) Universal Threshold d) SURE e) Minimax

Figure 5 shows the denoising signals, with different denoising thresholds using the soft
threshold rule. From the denoised signals obtain, using SURE threshold with soft threshold rules
remove noises from the original signal, while preserving the original signal’s structure obtaining
highest SNR compared to others. Thus, through this study, Daubechies 4 wavelet with 3 levels of
decomposition, using SURE denoising threshold employing soft threshold produces the best
results in terms of the SNR calculated.

3. CONCLUSION

This paper presented an approach for determining the optimal combination by underlying
the mother wavelet, level of decomposition, and thresholding method for ¢-OTDR data. SNR
was calculated and used to compare the performance of each parameter. The initial findings
demonstrate that when the level of decomposition is increasing, the SNR drop which is not ideal
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for denoising performance. Decomposition at level 3 yields the best results regardless of the
mother wavelet, while Symlet 4, Daubechies 4, Coiflets 3, and Bior Orthogonal 4.4 all perform
excellently, while Daubechies 4 obtains the highest SNR, making it the ideal mother wavelet for
our signals. Then we compare the denoising threshold which concludes that the SURE threshold
with soft threshold rule performs the best achieving the highest SNR. From this research, we can
conclude that having a unique combination of thresholds and wavelets is critical in removing
noises from our system. This result provides the best WT selection for our systems, which will
be used in the next phase of our project.
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