Numerical Simulation and Comparative Assessment of DG-HEMT Device for High-frequency Application

Abdelmalik Belarbi1* and Abdelkader Hamdoune2

1,2Department of Electrical and Electronic Engineering, Faculty of technology, Materials and Renewable Energy Research Unit, University of Abou-Bekr Belkaid, Tlemcen, Algeria.

Received 29 April 2018; Revised 11 July 2018; Accepted 13 July 2018

ABSTRACT

The main objective of this paper is to investigate the DC and AC performances of GaN/InGaN/GaN Double Gate High Electron Mobility Transistor (DG-HEMT) based on innovative materials III-V in particular III-N materials (Nitride Materials) by using SILVACO TCAD device simulator. First, the structure was modelled with optimized physical and geometrical parameters. Secondly, the DC and AC performances were investigated. Findings indicate that the device offers a maximum drain current of 1.6 A/mm, a threshold voltage of -2.2 V, a maximum transconductance of 0.8 S mm-1, a Ion/Ioff ration of 1010, a Drain Induced Barrier Lowering (DIBL) of 37 mV/V, a Sub-threshold Swing (SS) of 75 mV/dec and a Gate-leakage of 1.10-12 A. In terms of AC performances, the device exhibits a cut-off frequency (Ft) of 990 GHz and a maximum oscillation frequency (Fmax) of 2 THz. Finally, a comparison study was carried out with a recent state of the art.

Keywords: GaN, InGaN, AlGaN, DG-HEMT, DC Performances, AC Performances.

1. INTRODUCTION

The III-V materials are promising and an attractive compound semiconductors for the development of high power, high frequency and large scale integration circuits for next generation RF applications such as high power amplifiers for space research, remote sensing, imaging systems and low noise wide bandwidth amplifiers design [1]. The high performances of recent electronic circuits are highly recommended for recent technology advances in digital and analog systems [2]. A dramatic performance in terms of frequency has been achieved [3-4]. In fact; III-V materials in particular III-N materials have wide band gap energy and can potentially support a high breakdown voltage. In addition, high electron mobility serves to lead these components in the future to operate in high speed and low power computing [5].

The high electron mobility transistor based on III-V materials is a suitable device for terahertz frequency range [6] and the scaling down of the device’s dimensions in order to minimize the transit time of carriers and enhancing electrostatic integrity in the channel [7-8]. Scaling down the device’s dimensions resulting in an ultra-short gate length; due to that, the device faces a severe undesirable effect such as short channel effect (SCE’s) [8]. This effect heavily affects the DC and AC performances [9]. An appropriate parameter which is the aspect ratio needs to be maintained to minimize or suppress the short channel effect (SCE’s) [10]. The aspect ratio represents the ratio of gate length and the distance from the gate electrode to the channel in the vertical direction [11].
The development of the technology leads to the use of double gate structure and the purpose is to mitigate the undesirable effects such as short channel effects (SCEs). Double gate structure plays a significant role to suppress the harmful effects on DC and AC performances [12-13]. The DG structure features of two gates electrodes deposited on the top and back sides; this architecture provides an excellent electrostatic control of the device. The DG structure also contains two donor layers which serve to provide free electrons to the channel to improve the current density in the channel. Another advantage of the DG structure is that there is no buffer layer in this structure hence no substrate carrier injection. This results a dramatic enhancement of the performances and a better charge control of the device [14].

This paper consists of the investigation on the DC and AC performances of a DG-HEMT based on nitride materials and compare it with DG-HEMTs based on III-V materials obtained in state-of-the-art. This paper also demonstrates the importance of using innovative materials such as nitride alloys in devices in microwave applications.

This paper is organized according to the following parts: the first section introduce the aim of this work. A second section is dedicated for the presentation of the simulated structure and different simulation models such as physical models and numerical method that used different physical and geometrical parameters. The third section contains the simulated DC and AC characteristics. Furthermore, a comparison study was carried out in order to validate the results and prove the importance of this research on III-V materials in particular III-N materials for high frequency and high power applications. Finally, a general conclusion is presented. The device performances are measured by using numerical simulation tools (SILVACO TCAD).

2. DEVICE STRUCTURE AND SIMULATION MODELS

The schematic cross section of the simulated structure is shown in Figure 1. The physical and geometrical parameters of the device are: an undoped Schottky layer of $\text{Al}_{0.25}\text{Ga}_{0.75}\text{N}$ and a thickness of 1 nm, a donor layer of $\text{Al}_{0.25}\text{Ga}_{0.75}\text{N}$ with n-doping concentration of 3×10^{19} cm$^{-3}$ and a thickness of 7 nm. A 1 nm thick undoped spacer layer of GaN was inserted between the donor and channel layers as to separate the ionized donor atoms and the free electrons of the channel layer which furthermore improves the channel mobility; the channel layer is an undoped $\text{In}_{0.75}\text{Ga}_{0.25}\text{N}$ with 10 nm of thickness.

The layers below the channel are identical to the one above the channel in order to form DG-HEMT structure. The gate length is fixed to 15 nm and the area of the device is 0.5 μm \times 200 μm. The gate-source spacing (LGS) and the gate-drain spacing (LGD) are fixed to 110 nm and 370 nm, respectively. Table 1 shows the meaning of structure parameters.
Table 1 Meaning of structure parameters

<table>
<thead>
<tr>
<th>Structure parameters</th>
<th>Value (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate length ((L_G))</td>
<td>15</td>
</tr>
<tr>
<td>Spacing between gate to source side ((L_{GS}))</td>
<td>110</td>
</tr>
<tr>
<td>Spacing between gate to drain side ((L_{GD}))</td>
<td>370</td>
</tr>
<tr>
<td>Drain length in x direction ((L_D))</td>
<td>10</td>
</tr>
<tr>
<td>Source length in x direction ((L_S))</td>
<td>10</td>
</tr>
<tr>
<td>Thickness of SiN passivation layer ((h))</td>
<td>10</td>
</tr>
<tr>
<td>Spacing between drain and top side ((d))</td>
<td>19</td>
</tr>
</tbody>
</table>

The simulation was performed in 2D with GUMMEL-NEWTON as the numerical method to resolve Poisson and continuity equations. Taken from Silvaco ATLAS user's manuals [15], the physical models included in the simulation are the Shockley-Read-Hall (SRH) recombination mechanism to account the recombination effects, AUGER recombination to take accounts the high level injection effects, Bandgap Narrowing (BGN), and Parallel Electric Field (FLDNOB) to model the velocity saturation effect.

The physical parameters of the binary materials, GaN, AlN and InN are taken from Silvaco Atlas user's manual [15-16]; and the physical parameters of the ternary materials, In\(_{0.75}\)Ga\(_{0.25}\)N and Al\(_{0.25}\)Ga\(_{0.75}\)N, are deduced by linear interpolation according to the Vegard law [17].

3. RESULTS AND DISCUSSION

3.1 DC Performances

Figure 2 shows the energy band diagram since it presents the conduction and valence band energies as a function of depth from surface along the vertical direction of the device GaN/In\(_{0.75}\)Ga\(_{0.25}\)N/GaN.
Figure 3 shows the output characteristics: the drain-source current (Ids) as a function of drain-source voltage (Vds) for different gate-source voltages. The drain-source bias was swept from 0 V up to 5.0 V while the gate-source voltage was swept from 0 V to -2.2 V. The maximum drain current obtained is 1.6 A/mm at Vgs = 0.0 V. This high saturated drain current was obtained with undoped channel and 10 nm of thickness, due to the high electron density in the channel and a knee voltage (V\text{knee}) of only 0.5 V.

Figure 4 shows the transfer characteristics: the drain-source current (Ids) as a function of gate-source voltage (Vgs) while the drain voltage was fixed at 1.0 V and 5.0 V, and the gate-source voltage was swept from 0.0 V to -3.3 V. The device presents a low threshold voltage due to an excellent control of the channel. The threshold voltages were about -2.1 V and -2.25 V for drain-source voltages (Vds) of 1.0 V and 5.0 V, respectively.

Figure 5 shows the transconductance (gm) as a function of gate-source voltage (Vgs). The transconductance is the expression of the control mechanism of field effect transistors. Heterojunction Field Effect Transistors (HFETs) are characterized from all other FETs devices by their high transconductance. The simulated device exhibits a maximum transconductance of 800 mS/mm at -1.0 V gate-source voltage while drain-source voltage was fixed at 1.0 V.
Figure 3. The drain-source current as a function of drain source voltage while Vgs is swept from 0.0 V to -2.2 V, and Vds from 0.0 V to 5.0 V.

Figure 4. The drain-source current (Ids) as a function of gate-source voltage (Vgs) while the drain voltage is fixed at 1.0 V and 5.0 V, and gate-source voltage is swept from 0 V to -3.3 V.

The Drain Induced Barrier Lowering (DIBL) is an important parameter describing electrostatic integrity of the High Electron Mobility Transistor (HEMT). It is defined as the ratio of threshold voltage (V_{th}) change to the drain-source voltage (Vds) change ($\Delta V_{th} / \Delta V_{ds}$) \[28\]. In this work the DIBL was calculated at the difference between V_{th} for $V_{ds1}=1.0v$ and $V_{ds2}=5.0v$. The DIBL is calculated by the Eq. (1).
\[
\text{DIBL} = \text{abs}\left[\frac{\Delta V_{th}}{\Delta V_{ds}} \right] = \text{abs}\left[\frac{V_{th2} - V_{th1}}{V_{ds2} - V_{ds1}} \right] \\
\text{DIBL} = \text{abs}\left[\frac{-2.25 - (-2.1)}{5 - 1} \right] = \text{abs}\left[\frac{-0.15}{4} \right] = 0.037 \ \text{V/V} \\
\text{DIBL} = 37 \ \text{mV/V}
\]

Where \(V_{th1} = -2.1 \text{v} \) at \(V_{ds} = 1.0 \text{v} \) and \(V_{th2} = -2.25 \text{v} \) at \(V_{ds} = 5.0 \text{v} \)

Figure 5. Transconductance versus the gate-source voltage while drain-source bias is fixed at 1.0 V.

Figure 6 shows the gate-leakage current as a function of gate-source voltage, while the drain bias is fixed at 1.0 V and the gate source is swept from 1.0 V to -3.0 V for a DG-HEMT device based on nitride materials. The gate-leakage current is invariant with the gate bias, the device offers a gate leakage only of \(1.10^{-12} \text{A} \) at -3.0 V gate bias. This extremely low value is evident to indicate the high quality of the device.

Figure 7 shows the drain-source current plotted with log scale as a function of gate-source voltage. The On-state indicates the saturation current while the Off-state current is the sum of total leakage current which includes sub-threshold, gate and junction leakage current [18]. The \(I_{on}/I_{off} \) ratio extracted from the characteristics is about \(10^{10} \). A high value of \(I_{on}/I_{off} \) ratio is a crucial parameter for power application. Furthermore, this parameter has an attractive attention on power consumption in static and standby power applications.
The Sub-threshold Swing (SS) was determined on the log (Ids) characteristic as a function of Vgs. It corresponds to the gate-source voltage required to reduce the drain current by one decade. The SS is defined in mV / dec and it can be calculated using Eq. (2).

Sub-threshold slope \(SS = \frac{\Delta Vgs}{\Delta \log(Ids)} \)

\[SS = \frac{\Delta Vgs}{\text{dec}} \]

\[SS = Vgs2 - Vgs1 / \text{dec} \]

\[SS = [-2.2125 - (-2.1375)] V / \text{dec} \]

\[SS = 0.075 V / \text{dec} \]

\[SS = 75 mV / \text{dec} \]
3.2 AC Performance

In this section, the AC performances of the device were studied by analyzing the two important parameters: the cut-off frequency (f_t) and the maximum oscillation frequency (f_{max}) [19]. The f_t and f_{max} are evaluated when the current gain and the power unilateral gain are unitaries [20-21].

Figure 8 shows the current gain and unilateral power gain as a function of frequency, while the drain bias is fixed at 1.0 V and the gate bias is fixed at 0.0 V.

![Figure 8](image)

Figure 8. The current gain and the unilateral power gain as a function of the frequency, while the drain bias is fixed at 1.0 V, and the gate bias is fixed at 0.0 V.

For a gate length of 15 nm, the device exhibits a cut-off frequency of 990 GHz and a maximum oscillation frequency of 2 THz, while the drain-source voltage is fixed at 1.0 V. The device exhibits excellent AC performances compared to the results found in the state of the art.

The results found are very impressive and attractive for power applications and terahertz range; the reason is the use of particular nitride materials, and the source and drain electrodes are in direct contact with the channel layer. In a conventional structure, these electrodes are far from the channel layer, and would give lower RF performance.

Table 2 contains the device's characteristics and Table 3 and 4 present comparisons of our results such as the cut-off frequency (f_t), the maximum oscillation frequency (f_{max}) and digital characteristics with the highest values reported in the state of the art.
Table 2 Device characteristic of the simulated DG-HEMT

<table>
<thead>
<tr>
<th>Device's characteristics of DG-HEMT with gate length of 15nm</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain current I_D (A/mm)</td>
<td>1.6</td>
</tr>
<tr>
<td>Threshold voltage V_{th} (V)</td>
<td>-2.2</td>
</tr>
<tr>
<td>Transconductance g_m (S/mm)</td>
<td>0.8</td>
</tr>
<tr>
<td>Drain Induced Barrier Lowring DIBL (mV/V)</td>
<td>37</td>
</tr>
<tr>
<td>Sub-threshold Swing SS (mV/dec)</td>
<td>75</td>
</tr>
<tr>
<td>Gate-leakage current (A)</td>
<td>1.10^{-12}</td>
</tr>
<tr>
<td>Ion/Ioff ratio</td>
<td>1.10^{10}</td>
</tr>
<tr>
<td>Cut-off frequency F_t (GHz)</td>
<td>990</td>
</tr>
<tr>
<td>Maximum oscillation frequency F_{max} (GHz)</td>
<td>2000</td>
</tr>
</tbody>
</table>

Table 3 Comparison of highest reported F_t and F_{max} in the state of the art based on III-V materials with our reported DG-HEMT based on III-N materials (Nitride materials)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Gate length (nm)</th>
<th>F_t (Ghz)</th>
<th>F_{max} (Ghz)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[22]</td>
<td>100</td>
<td>192</td>
<td>288</td>
<td>2004</td>
</tr>
<tr>
<td>[23]</td>
<td>100</td>
<td>-</td>
<td>257</td>
<td>2006</td>
</tr>
<tr>
<td>[25]</td>
<td>50</td>
<td>175</td>
<td>448</td>
<td>2013</td>
</tr>
<tr>
<td>[26]</td>
<td>30</td>
<td>776</td>
<td>905</td>
<td>2017</td>
</tr>
<tr>
<td>[27]</td>
<td>30-50</td>
<td>825-710</td>
<td>1082-989</td>
<td>2017</td>
</tr>
<tr>
<td>[8]</td>
<td>30</td>
<td>809</td>
<td>1030</td>
<td>2018</td>
</tr>
<tr>
<td>This work</td>
<td>15</td>
<td>990</td>
<td>2000</td>
<td>2018</td>
</tr>
</tbody>
</table>

Table 4 Comparison of highest reported DC performances in the state of the art based on III-V materials with our reported DG-HEMT based on III-N materials (Nitride materials)

<table>
<thead>
<tr>
<th>Reference</th>
<th>L_G (nm)</th>
<th>I_D (A/mm)</th>
<th>V_{th} (V)</th>
<th>Gate-leakage current (A)</th>
<th>g_m (S/mm)</th>
<th>I_{on}/I_{off}</th>
<th>DIBL</th>
<th>SS</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[22]</td>
<td>100</td>
<td>0.6</td>
<td>-0.4</td>
<td>-</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2004</td>
</tr>
<tr>
<td>[23]</td>
<td>100</td>
<td>0.82</td>
<td>-</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2006</td>
</tr>
<tr>
<td>[24]</td>
<td>100</td>
<td>0.56</td>
<td>-0.4</td>
<td>-</td>
<td>2.6</td>
<td>15</td>
<td>75</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>[25]</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.81</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2013</td>
</tr>
</tbody>
</table>
4. CONCLUSION

In summary, the DC and AC performances of a DG-HEMT based on III-V materials in particular nitride materials (III-N) by using two dimensional TCAD simulator (SILVACO TCAD) was investigated. The use of two gates on both sides of the device significantly improves its performances which become very dominant in high power and high field conditions. The better channel control with double gate (DG) has been achieved by suppressing the undesirable effect such as short channel effect (SCE) in terms of DIBL and SS. The device exhibits a maximum drain current of 1.6 A/mm, a threshold voltage of -2.2 V, a maximum transconductance of 800 mS mm\(^{-1}\), an Ion/Ioff ratio of 10\(^{-10}\), a DIBL of 37 mV/V, a SS of 75 mV/dec, and a gate-leakage current of 1.10\(^{-12}\) A. Furthermore, a dramatic AC performance in terms of cut-off frequency (F_t) and maximum oscillation frequency (F_max) has been achieved. A comparison study was carried out with a recent state of the art and the obtained results provide a reference for future research that want to use III-V materials in particular nitride materials (III-N) for power applications and terahertz range.

ACKNOWLEDGMENTS

This work was supported by the Materials and Renewable Energy Research Unit of the University of Tlemcen (Algeria). The author wishes to thank the professor A. Hamdoune for his support.

REFERENCES

[27] SaravanaKumar R, Mohanbabu A, Mohankumar N, Godwin Raj D, "In_{0.7}Ga_{0.3}As/InAs/In_{0.7}Ga_{0.3} As composite-channel double-gate (DG)-HEMT devices for high frequency applications," J Comput Electron, 16. 10.1007/s10825-017-0991-x, 2017.