UNIVERSITI MALAYSIA

PERLIS

# Influence of Ar gas on Optical and morphology Properties of films (CdS) prepared by pulse laser deposition (PLD) Technique

Yasmeen Z. Dawood\*

Mustansiriyah University, College of Education, Department of Physics, Baghdad. Iraq,

Received 27 July 2021, Revised 31 August 2021, Accepted 10 September 2021

# ABSTRACT

Cadmium sulfide thin films which formed by pulse laser deposition method, which CdS thin films deposited on glass substrate with different Ar gas (5, 10 and 15) torr. Structural (X-ray) diffraction, morphological (atomic force microscope) and optical (transmittance and absorption) spectra of CdS films have been investigated. The high value of transmittance was determined from optical transmittance spectra was 72%. direct band gap energy of prepared films are (2.54, 2.16 and 2.72) eV with different pressure of Ar gas. X-ray diffraction synthesis prove CdS films in crystalline with hexagonal structure. By using Scherrer's equation, average grain size about 80nm was determined. AFM image shown the morphology of formation films and the effect of gas pressure on nanostructure.

Key words: Cadmium sulfide, pulse laser deposition, Structural, morphological and optical properties.

### 1. INTRODUCTION

Most of the modern electronic devices depend in their work on materials which have physical and chemical properties namely, semiconductor materials, which possess the properties of insulators at Low temperature, and it has the ability to conduct electrical transmission at a high temperature to a certain extent [1], where extensive and extensive research has been started to identify the structural, optical properties as well as The electrical power of these materials and the possibility of used it in many application [3, 4].

Cadmium sulfide is a chemical compound with the formula CdS. The binary semiconductors belong to group VI-II of the periodic table. They are formed as a result of a combination of two elements, the first from the second column (II) is Cd and the second from the sixth column VI is S) [5]. CdS is a polycrystalline compound, whose crystal structure is either Hexagonal wurtzite (which is more stable at room temperatures) or lattice-type cube (which is similar to diamond in its composition) [Mixed], [where it can be It is obtained by heat treatment [6]. The sulfur and cadmium ions are linked by a resulting covalent bond about the sharing of two electrons between the sulfur atom and cadmium. It should be noted that the presence of CdS in one of the preceding structures are controlled by the preparation conditions [7]. Cadmium sulfide CdS is n-type semiconductor with an intrinsic and at room temperature this material have almost wide band gap (Eg  $\approx$  2.42 eV) [1].

<sup>\*</sup>Corresponding author: yasmeen\_zadan@yahoo.com.

Note: Accepted manuscripts are articles that have been peer-reviewed and accepted for publication by the Editorial Board. These articles have not yet been copyedited and/or formatted in the journal house style.



These properties have made CdS material enter into many applications, such as light emitting diodes [8], photovoltaic [9], , solar cell [10, 11], environmental pollution control [12] and optical waveguides and non-linear optical devices. [13]. There are several techniques have been used to produce cadmium sulfide films, such as, thermal evaporation [14], chemical bath deposition [15], sputtering [16], spray pyrolysis [17] and Pulsed laser deposition PLD [18] which is consider as very interest technique to format multi-component thin films, due to feasibility and the stoichiometric deposition of the semiconductor materials [6, 7], The films formed in this way (PLD) can control their thickness and have high quality special II–VI compound semiconductors with thickness as thin as one nanometer [5]

The aim of this work is to study the properties (optical and structural) of CdS films and to prove that Ar gas will affect these properties.

### 2. MATERIAL AND METHODS

Pulsed Nd:YAG laser, wavelength of 1064 nm with first harmonic, laser pulse repetition rate was 10 Hz and laser energy (130 mJ) with pulse duration was 10 ns, laser ablation was used to target CdS. The laser spot area was 1 mm<sup>2</sup>. Our first step, the cadmium sulfide powder was pressed into a tablet, then pressed into granules and heated to 150°C in air. A vacuum chamber with a pressure of up to 10<sup>-3</sup> tor was used to conduct the deposition process for these films. The target is about 10 cm away from the laser beam. The laser beam is tilted at an angle of 35° degrees from the target. The effect of gas pressure inside the vacuum chamber on the ablation process within the range (5-15) torr was studied.

In order to obtain the growth rates, we measured the thickness of the films using a surface profile. Using optical transmittance analysis, the optical characteristics of formed films were studied by use a UV/Vis spectrophotometer (PerkinElmer Lambda 950). The optical power bandwidth was calculated for the samples from the optical transmission spectra. The surface shape was examined by AFM- atomic force microscopy. Digital Instruments NanoScope Italy) operates in eavesdropping mode. The crystalline structure study of thin films were used, an X-Ray Diffraction measurement, with wavelength=1.5418 Å and Cu Ka radiation.

#### 3. RESULTS AND DISCUSSION

To use the CdS films in one of the important applications such as sensing and photovoltaic applications, we must study the optical properties. Therefore, the samples were labeled with a UV/VIS spectrophotometer. The optical properties of these samples were studied (through spectroscopic and absorbance optical transmittance analysis. Figure 1 shown optical transmittance of these films of the same films thickness of 100 nm deposited on glass substrate at 200°C. Note that transmittance is a function of wavelength as it increases with increasing wavelength. The highest value of transmittance of precipitated films was obtained at a gas pressure of 5, and it reached 72%. This can be used in many applications, such as solar cells.





Figure 1. Transmittance spectra of CdS thin films with different Ar gas pressures (5, 10 and 15 torr).

Figure 2 shows the absorbance change as a function of the wavelength of the range from 400 to 900. From the figure it is shown that the change in the ratio of Ar gas has a strong effect on the value of the absorbance. So when the gas pressure is 5 torr, the deposition rate of cadmium atoms will increase. However, if the pressure of the Ar gas is 10 torr, the collision probability is CdS particles are increased from the target substance, the amount of CdS particles that reached the substrate decreases. Moreover, after a lot of energy collisions, the CdS molecules that reached the substrate are lower. If the deposred pressure was 15 torr, the deposition rate decreases, and this can determine many surface properties, including more uniform grain sizes and reduced crater density, which makes us get the lowest absorbance values at 15 tor gas pressure.





Figure 2. Absorbance of CdS films deposited at Ar gas pressures (5, 10 and 15)torr.

The optical energy gap can be defined as the energy required to transfer an electron from the valence band to the condition band. Using the mathematical relation,  $\alpha hv = A(hv-Eg)^a$ , where a is a constant deal with the energy band structure of the type of materials , hv is the energy of incited



photon energy, and Eg is the band gap. Being that the energy gap is within the indirect band of CdS, a = 2. From draw  $(\alpha hv)^2$  against hv, the band gap of the CdS films deposited at different Ar gas pressures is known from the initial absorption edge line when a = 0. Fig. 3 shows the variance obtained energy gap values  $(\alpha hv)^2$  against the energy of photon for the deposited films (CdS) under different value o pressures of Ar gas [15, 16]. The value of Eg was 2.54, 2.16 and 2.72 eV for gas pressure 5, 10 and 15 respectively. A decrease in the values of Eg was recorded with high in Ar gas pressure due to an increase in the average grain size over time.



Figure 3. Optical band gap of CdS films at Ar gas pressures (5,10 and 15) torr.

Figure 4 shows AFM images (A: tow dimension and B: three dimension), for all films obtained under different gas pressures (5, 10 and 15) torr. In Figure 4, CdS thin film deposited at 5 torr, The grains size distributed uniformly and the boundaries of grains weaken disappears. The deposited film is compact with less pore density, and particles of different sizes will be unevenly distributed on the surface average partial size was 90nm with roughness reach to 3.49nm. Particle aggregation also occurs and the grain boundaries cannot be found clearly. This is due to the reconstitution of CdS particles from the substrate surface.

At the pressure of the argon gas reaches 10 torr, the energy delivered to the particles at the substrates is insufficient and uneven, and the migration of particles on the substrates is not sufficient. The film formed with 10 Tor pressure has an average gain of 108 nm and a roughness of 2.27 nm. Figure 3c, shows the CdS thin film formed at a pressure of 15 Tor. This movie is going to be great. This is a result of the strong and produced damping at high pressure. Re-evaporation of particles reaches parts of the surface. The partial size was 123 nm and the surface roughness was 3.26 nm





**Figure 4.** AFM image for CdS films deposited at different gas pressures: (A(3D+2D): 5 torr, B(3D+2D): 10 torr and C(3D+2D): 15 torr).

X-ray diffraction (XRD) technology allows the exact crystal structure of materials to be determined. It has been reported that the predominant orientation of the thin film deposited on the glass substrate is affected by Ar gas pressure change. Figure 5 shows the CdS source diffractograms for films, prepared using PLD technique at different Ar gas pressure. XRD analysis of the prepared CdS thin films bserved that they have a polycrystalline and hexagonal structure (JCPDS 96-900-



(1)

In Press, Accepted Manuscript – Note to user

8863) and have different orientations. The cubic structure of CdS was revealed in these films (JCPDS card 96-900-8840). The peaks will vary in intensity with different films deposited at different Ar gas pressures.

XRD analysis of the deposited films found that they contain highly oriented crystals with hexagonal structures at  $2\theta$ =26.6° and preferential orientation at the c-((002) axis) perpendicular to the substrate plane and for all samples prepared at different pressures. A very weak peak at  $2\theta$  = (47° and 51.4°), corresponding to the (103) and (112) plane. By this figure, it can be found that increasing the pressure to 10 Tor will show in the formed films polycrystalline structures (consisting of a hexagonal phase and a cubic style ), and the basic phase was hexagonal phase. At a pressure of 15torr, three major diffraction peaks for CdS thin films appear at 2 $\theta$ =34.1 and 43.3 which correspond to (110) and (200) of the hexagonal phase. This agreement with many researches [13 and 15] Using Scherer's equation (1) the average crystal size was calculated where the constant K is a form factor of 0.94,  $\beta$  FWHM in radians, with wavelength (0.15418 nm) and  $\theta$  is the angle of Bragg We use standard H reflection (0 0 2 ) at 2 $\theta$ = 26.66°. It has been shown that the particle size of the thin film increases with increasing gas pressure with a value of (42, 80 and 130) nm for gas pressure 5, 10 and 15, respectively [6, 16].







Figure 5. The XRD pattern of thin films (CdS) deposited at different Pressures.

### 4. CONCLUSION

In this paper, the following was clarified, CdS films were deposited by PLD at different deposition pressures (5, 10, and 15) torr for Ar gas. The properties of these films were shown depending on the gas pressure during the deposition process. Film formation rate is highly dependent on gas pressures. All films as have polycrystalline structurer. The films which deposited at 5 torr (pressures) were mainly hexagonal, and when pressure reach to 10 torr the cubic phase will appear. AFM morphology image showing that CdS thin films prepared at 5 torr gas pressures were crystalline and have uniformity film surface with low grain sizes. The optical bandgaps (Eg) of the CdS films have a value of 2.1, 2.54 and 2.3 eV at a deposition gas pressure of 5, 10 and 15 torr, respectively.

#### REFERENCES



- [1] Aus A. Najim, Hassan H. Darwoysh, Yasmeen Z. Dawood, Salah Q. Hazaa, and Ammar T. Salih, "Structural, Topography, and Optical Properties of Ba-Doped Mn<sub>3</sub>O<sub>4</sub> Thin Films for Ammonia Gas Sensing Application", Phys. Status Solidi A 1800379 (2018) (1 of 8).
- [2]Y. Z. Dawood, S. Qaduri Hazaa, S. J. Hasan and Najiba Abdullah Hasan, "Effect of substrate temperature on the morphological and optical properties of nanocrystalline ZnO films formed by DC magnetron sputtering", IOSR Journal of Applied Physics (IOSR-JAP) 7 1 Ver. II. (2015) PP 50-54.
- [3] S.M. Mahdavi, A. Irajizad, A. Azarian1 and R.M. Tilaki, "Optical and Structural Properties of Copper Doped CdS Thin Films Prepared by Pulsed Laser Deposition", Scientia Iranica, 15–3 (2008) pp 360-365.
- [4]P. Kuppusami & V. S. Raghunathan, "Status of pulsed laser deposition: challenges and Opportunities", Surface Engineering, 22 2 (2006) 81-83.
- [5] Raghad Y. Mohammed1, S. Abduol1, Ali M. Mousa2, "Structural and Optical properties of Chemically Deposited CdS Thin Films", International Letters of Chemistry, Physics and Astronomy 29 (2014) pp 91-104.
- [6] K. P. Acharya1, J R Skuza2, R A Lukaszew2, C Liyanage3 and B Ullrich, "CdS thin films formed on flexible plastic substrates by pulsed-laser deposition", Journal of Physics: Condensed Matter, 19 19, (2007).
- [7]Y. Z. Dawood, "The Influence of Substrate Temperature on CdS Thin Films Properties Prepared by Pulse Laser Deposition on Glass Substrates", energy procedia 119 (2017) 536-544.
- [8] S. Y. Gezgin, A. Kepceoğlu, Y. Gündoğdu, S. Zongo, A. Zawadzka, Hamdi Şükür Kiliç, and B. Sahraou, "Effect of Ar Gas Pressure on LSPR Property of Au Nanoparticles: Comparison of Experimental and Theoretical Studies", Nanomaterials (Basel), 10 6 (2020) 1071.
- [9] J. S. Ahn, J. O. Cha, C. H. Shin and S. J. Yeo, H. J. Im and J. Sakai, K. B. Lee, H. M. Kim and T. H. Nam, "Effect of Ambient Ar Gas on the Composition Control and Crystalline Properties of TiNi Thin Films Fabricated by Using Pulsed Laser Deposition", Journal of the Korean Physical Society, 50 6 (2007) 1750-1754.
- [10] Z. A. Muhammad, A. T. Hassan and Y. Z. Dawood, "Studying The Optical Properties of CdO and CdO: Bi Thin Films", Baghdad Science Journal Vol.13 3 (2016) 395-598.
- [11] Jinan Ali, Wasan M Mohammed and Amer Al-Nafiey, "CdS Nanostructured Thin Films Synthesized by Pulsed Laser Deposition for Solar Cell Technology", Key Engineering Materials, 882 (2021) 155-164.
- [12] A. Ashok, G. Regmi, A. Romero-Núñez, M. Solis-López, S. Velumani & H. Castaneda, "Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications", Journal of Materials Science: Materials in Electronics volume 31 10 (2020) pp.7499–7518.
- [13] S. Rajpal and V. Bandyopadhyay, "Structural and Optical Properties of CdS Thin Film Grown by Chemical Bath Deposition", Journal of Nano- and Electronic Physics 5(3), 03021(3pp), (2013).
- [14] N. Memarian, S. Mohammad Rozati, I. Concina and A. Vomiero, "Deposition of Nanostructured CdS Thin Films by Thermal Evaporation Method: Effect of Substrate Temperature" Materials, 10, 773(2017).
- [15] F. Salamon, "Effect Some Factors on the Structural Properties Of The CdS Thin Films Prepared By Chemical Bath Deposition", International Letters of Chemistry, Physics and Astronomy Online: 15, Vol. 64 (2016) pp 1-10.
- [16] C. Doroody,K. S. Rahman, H. N. Rosly, M. N. Harif, M. Isa, Y. B. Kar, S. K. Tiong and N.Amin, "A comparative study of CdS thin films grown on ultra-thin glass substrates by RF magnetron sputtering and chemical bath deposition", Materials Science in Semiconductor Processing, , 105935, (2021).



- [17] G Evgeny, S. Dmitry, T. Tatyana, I. Vladimir, K. Sergey, M. Aleksandr, N. Aleksey and U. Dmitry, "Spray pyrolysis deposited Cr and In doped CdS films for laser application", Optical Materials, 117, article id. 111153, (2021).
- [18] Sarveswaran Thangarajan, Gopinathan Chellachamy, Saravanakumar Kulendran, Pandi Pitchai, and Mahalakshmi Kandasamy, "Synthesis and Study of CdS Thin Films Prepared with Different KMnO4 Activation Time", Journal of Materials Volume 2016, Article ID 3439827, 7 pages, 2016.